LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Languages: English
Types: Unknown
Subjects:
The plant hormone gibberellin (GA) regulates many developmental processes during a plant’s life cycle, including root and hypocotyl growth. Bioactive GAs promote GA-responsive growth and development by targetting DELLA proteins for degradation. Whilst the early steps of GA signalling are well understood it is not yet clear how the DELLA proteins alter the expression of GA-responsive genes. As other steps of the signalling pathway are encoded by multi-gene families it is possible that genetic redundancy is masking the transcription factors that act downstream of DELLAs. Using a chemical screen based on DELLA protein’s control of GA biosynthesis, 28 chemicals which blocked the GA-mediated downregulation of GA20ox1::GUS activity were identified. Using GA-mediated RGA degradation as a marker, 11 chemicals were identified as acting downstream of DELLAs in the GA signalling pathway.\ud \ud One of the chemicals (N23) identified in the screen was found to induce agravitropic root growth, a response more often associated with perturbation of auxin signalling. However, N23 had no effect on auxin signalling based on the characterisation of its effect on auxin-inducible genes and AUX/IAA degradation. The mode of action of N23 requires further investigation. However, N23 represents a potential for studying the role of GA in modulating gravitropism.\ud \ud The compound N16 potentially perturbs GA signalling by altering GA transport. It was found to block the uptake of both radiolabelled and fluorescent labelled GA into the root. Five days of exposure to N16 was required before any inhibition was observed on Col-0 roots but root elongation in ga1-3 seedlings was inhibited after only 24 hours suggesting that roots of wild type plants are saturated for GA. The site of action of N16 was not identified, but a putative oligopeptide transporter OPT6 was which is rapidly downregulated in the roots in response to GA application was investigated as a potential novel GA transporter. However, GA uptake assays in yeast strains overexpressing OPT6 proved inconclusive.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Oh, J., and Wehner, T. (2007). ABA improves chilling resistance in watermelon. Hortscience 42, 956-956.
    • Okada, K., Ueda, J., Komaki, M.K., Bell, C.J., and Shimura, Y. (1991). Requirement of the Auxin Polar Transport-System in Early Stages of Arabidopsis Floral Bud Formation. Plant Cell 3, 677-684.
    • Okushima, Y., Overvoorde, P.J., Arima, K., Alonso, J.M., Chan, A., Chang, C., Ecker, J.R., Hughes, B., Lui, A., Nguyen, D., Onodera, C., Quach, H., Smith, A., Yu, G.X., and Theologis, A. (2005). Functional genomic analysis of the AUXIN RESPONSE FACTOR gene family members in Arabidopsis thaliana: Unique and overlapping functions of ARF7 and ARF19. Plant Cell 17, 444-463.
    • Olszewski, N., Sun, T.P., and Gubler, F. (2002). Gibberellin signaling: Biosynthesis, catabolism, and response pathways. Plant Cell 14, S61-S80.
    • Otsuka, M., Kenmoku, H., Ogawa, M., Okada, K., Mitsuhashi, W., Sassa, T., Kamiya, Y., Toyomasu, T., and Yamaguchi, S. (2004). Emission of entkaurene, a diterpenoid hydrocarbon precursor for gibberellins, into the headspace from plants. Plant and Cell Physiology 45, 1129-1138.
    • Ottenschlager, I., Wolff, P., Wolverton, C., Bhalerao, R.P., Sandberg, G., Ishikawa, H., Evans, M., and Palme, K. (2003). Gravity-regulated differential auxin transport from columella to lateral root cap cells. Proceedings of the National Academy of Sciences of the United States of America 100, 2987- 2991.
    • Ouellet, F., Overvoorde, P.J., and Theologis, A. (2001). IAA17/AXR3: Biochemical insight into an auxin mutant phenotype. Plant Cell 13, 829-841.
    • Overvoorde, P.J., Okushima, Y., Alonso, J.M., Chan, A., Chang, C., Ecker, J.R., Hughes, B., Liu, A., Onodera, C., Quach, H., Smith, A., Yu, G.X., and Theologis, A. (2005). Functional genomic analysis of the AUXIN/INDOLE-3- ACETIC ACID gene family members in Arabidopsis thaliana. Plant Cell 17, 3282-3300.
    • Parinov, S., Sevugan, M., Ye, D., Yang, W.C., Kumaran, M., and Sundaresan, V. (1999). Analysis of flanking sequences from Dissociation insertion lines: A database for reverse genetics in Arabidopsis. Plant Cell 11, 2263-2270.
    • Park, J., Nguyen, K.T., Park, E., Jeon, J.S., and Choi, G. (2013). DELLA Proteins and Their Interacting RING Finger Proteins Repress Gibberellin Responses by Binding to the Promoters of a Subset of Gibberellin-Responsive Genes in Arabidopsis. Plant Cell 25, 927-943.
    • Park, S.Y., Fung, P., Nishimura, N., Jensen, D.R., Fujii, H., Zhao, Y., Lumba, S., Santiago, J., Rodrigues, A., Chow, T.F.F., Alfred, S.E., Bonetta, D., Finkelstein, R., Provart, N.J., Desveaux, D., Rodriguez, P.L., McCourt, P., Zhu, J.K., Schroeder, J.I., Volkman, B.F., and Cutler, S.R. (2009). Abscisic Acid Inhibits Type 2C Protein Phosphatases via the PYR/PYL Family of START Proteins. Science 324, 1068-1071.
    • Parry, G., Delbarre, A., Marchant, A., Swarup, R., Napier, R., PerrotRechenmann, C., and Bennett, M.J. (2001). Novel auxin transport inhibitors phenocopy the auxin influx carrier mutation aux1. Plant Journal 25, 399-406.
    • Parry, G., Calderon-Villalobos, L.I., Prigge, M., Peret, B., Dharmasiri, S., Itoh, H., Lechner, E., Gray, W.M., Bennett, M., and Estelle, M. (2009). Complex regulation of the TIR1/AFB family of auxin receptors. Proceedings of the National Academy of Sciences of the United States of America 106, 22540- 22545.
    • Patten, C.L., and Glick, B.R. (2002). Role of Pseudomonas putida indoleacetic acid in development of the host plant root system. Applied and Environmental Microbiology 68, 3795-3801.
    • Pearce, S., Saville, R., Vaughan, S.P., Chandler, P.M., Wilhelm, E.P., Sparks, C.A., Al-Kaff, N., Korolev, A., Boulton, M.I., Phillips, A.L., Hedden, P., Nicholson, P., and Thomas, S.G. (2011). Molecular Characterization of Rht1 Dwarfing Genes in Hexaploid Wheat. Plant Physiology 157, 1820-1831.
    • Peer, W.A., and Murphy, A.S. (2007). Flavonoids and auxin transport: modulators or regulators? Trends in Plant Science 12, 556-563.
    • Penfield, S., Gilday, A.D., Halliday, K.J., and Graham, I.A. (2006). DELLAmediated cotyledon expansion breaks coat-imposed seed dormancy. Current Biology 16, 2366-2370.
    • Peng, J.R., Carol, P., Richards, D.E., King, K.E., Cowling, R.J., Murphy, G.P., and Harberd, N.P. (1997). The Arabidopsis GAI gene defines a signaling pathway that negatively regulates gibberellin responses. Genes & Development 11, 3194-3205.
    • Peng, J.R., Richards, D.E., Hartley, N.M., Murphy, G.P., Devos, K.M., Flintham, J.E., Beales, J., Fish, L.J., Worland, A.J., Pelica, F., Sudhakar, D., Christou, P., Snape, J.W., Gale, M.D., and Harberd, N.P. (1999). 'Green revolution' genes encode mutant gibberellin response modulators. Nature 400, 256-261.
    • Perrot-Rechenmann, C., and Napier, R.M. (2005). Auxins. Plant Hormones 72, 203- 233.
    • Petrasek, J., Mravec, J., Bouchard, R., Blakeslee, J.J., Abas, M., Seifertova, D., Wisniewska, J., Tadele, Z., Kubes, M., Covanova, M., Dhonukshe, P., Skupa, P., Benkova, E., Perry, L., Krecek, P., Lee, O.R., Fink, G.R., Geisler, M., Murphy, A.S., Luschnig, C., Zazimalova, E., and Friml, J. (2006). PIN proteins perform a rate-limiting function in cellular auxin efflux. Science 312, 914-918.
    • Petroski, M.D., and Deshaies, R.J. (2005). Function and regulation of Cullin-RING ubiquitin ligases. Nature Reviews Molecular Cell Biology 6, 9-20.
    • Pfaffl, M.W. (2001). A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Research 29.
    • Phillips, A.L., Ward, D.A., Uknes, S., Appleford, N.E.J., Lange, T., Huttly, A.K., Gaskin, P., Graebe, J.E., and Hedden, P. (1995). Isolation and Expression of 3 Gibberellin 20-Oxidase Cdna Clones from Arabidopsis. Plant Physiology 108, 1049-1057.
    • Pike, S., Patel, A., Stacey, G., and Gassmann, W. (2009). Arabidopsis OPT6 is an Oligopeptide Transporter with Exceptionally Broad Substrate Specificity. Plant and Cell Physiology 50, 1923-1932.
    • Plackett, A.R.G. (2011). The role of gibberellin in the reproductive development of Arabidopsis thaliana (University of Nottingham).
    • Plackett, A.R.G., Thomas, S.G., Wilson, Z.A., and Hedden, P. (2011). Gibberellin control of stamen development: a fertile field. Trends in Plant Science 16, 568-578.
    • Plackett, A.R.G., Powers, S.J., Fernandez-Garcia, N., Urbanova, T., Takebayashi, Y., Seo, M., Jikumaru, Y., Benlloch, R., Nilsson, O., Ruiz-Rivero, O., Phillips, A.L., Wilson, Z.A., Thomas, S.G., and Hedden, P. (2012). Analysis of the Developmental Roles of the Arabidopsis Gibberellin 20-Oxidases Demonstrates That GA20ox1, -2, and -3 Are the Dominant Paralogs. Plant Cell 24, 941-960.
    • Pollmann, S., Neu, D., and Weiler, E.W. (2003). Molecular cloning and characterization of an amidase from Arabidopsis thaliana capable of converting indole-3-acetamide into the plant growth hormone, indole-3-acetic acid. Phytochemistry 62, 293-300.
    • Pollmann, S., Muller, A., Piotrowski, M., and Weiler, E.W. (2002). Occurrence and formation of indole-3-acetamide in Arabidopsis thaliana. Planta 216, 155-161.
    • Pollmann, S., Neu, D., Lehmann, T., Berkowitz, O., Schafer, T., and Weiler, E.W. (2006). Subcellular localization and tissue specific expression of amidase 1 from Arabidopsis thaliana. Planta 224, 1241-1253.
    • Poupart, J., and Waddell, C.S. (2000). The rib1 mutant is resistant to indole-3-butyric acid, an endogenous auxin in arabidopsis. Plant Physiology 124, 1739-1751.
    • Proebsting, W.M., Hedden, P., Lewis, M.J., Croker, S.J., and Proebsting, L.N. (1992). Gibberellin Concentration and Transport in Genetic Lines of Pea - Effects of Grafting. Plant Physiology 100, 1354-1360.
    • Pysh, L.D., Wysocka-Diller, J.W., Camilleri, C., Bouchez, D., and Benfey, P.N. (1999). The GRAS gene family in Arabidopsis: sequence characterization and basic expression analysis of the SCARECROW-LIKE genes. Plant Journal 18, 111-119.
    • Radwanski, E.R., and Last, R.L. (1995). Tryptophan Biosynthesis and Metabolism - Biochemical and Molecular-Genetics. Plant Cell 7, 921-934.
    • Rahman, A., Bannigan, A., Sulaman, W., Pechter, P., Blancaflor, E.B., and Baskin, T.I. (2007). Auxin, actin and growth of the Arabidopsis thaliana primary root. Plant Journal 50, 514-528.
    • Rahman, A., Takahashi, M., Shibasaki, K., Wu, S.A., Inaba, T., Tsurumi, S., and Baskin, T.I. (2010). Gravitropism of Arabidopsis thaliana Roots Requires the Polarization of PIN2 toward the Root Tip in Meristematic Cortical Cells. Plant Cell 22, 1762-1776.
    • Rajagopal, R., Tsurusaki, K., Kannangara, G., Kuraishi, S., and Sakurai, N. (1994). Natural Occurrence of Indoleacetamide and Amidohydrolase Activity in Etiolated Aseptically-Grown Squash Seedlings. Plant and Cell Physiology 35, 329-339.
    • Rakusova, H., Gallego-Bartolome, J., Vanstraelen, M., Robert, H.S., Alabadi, D., Blazquez, M.A., Benkova, E., and Friml, J. (2011). Polarization of PIN3- dependent auxin transport for hypocotyl gravitropic response in Arabidopsis thaliana. Plant Journal 67, 817-826.
    • Ramos, J.A., Zenser, N., Leyser, O., and Callis, J. (2001). Rapid degradation of auxin/indoleacetic acid proteins requires conserved amino acids of domain II and is proteasome dependent. Plant Cell 13, 2349-2360.
    • Rashotte, A.M., DeLong, A., and Muday, G.K. (2001). Genetic and chemical reductions in protein phosphatase activity alter auxin transport, gravity response, and lateral root growth. Plant Cell 13, 1683-1697.
    • Reed, J.W. (2001). Roles and activities of Aux/IAA proteins in Arabidopsis. Trends in Plant Science 6, 420-425.
    • Reid, J.B., Murfet, I.C., and Potts, W.C. (1983). Internode Length in Pisum .2. Additional Information on the Relationship and Action of Loci Le, La, Cry, Na and Lm. Journal of Experimental Botany 34, 349-364.
    • Rieu, I., Eriksson, S., Powers, S.J., Gong, F., Griffiths, J., Woolley, L., Benlloch, R., Nilsson, O., Thomas, S.G., Hedden, P., and Phillips, A.L. (2008a). Genetic Analysis Reveals That C-19-GA 2-Oxidation Is a Major Gibberellin Inactivation Pathway in Arabidopsis. Plant Cell 20, 2420-2436.
    • Rieu, I., Ruiz-Rivero, O., Fernandez-Garcia, N., Griffiths, J., Powers, S.J., Gong, F., Linhartova, T., Eriksson, S., Nilsson, O., Thomas, S.G., Phillips, A.L., and Hedden, P. (2008b). The gibberellin biosynthetic genes AtGA20ox1 and AtGA20ox2 act, partially redundantly, to promote growth and development throughout the Arabidopsis life cycle. Plant Journal 53, 488-504.
    • Robert, S., Raikhel, N.V., and Hicks, G.R. (2009). Powerful partners: Arabidopsis and chemical genomics. Arabidopsis Book, Published Online.
    • Robert, S., Kleine-Vehn, J., Barbez, E., Sauer, M., Paciorek, T., Baster, P., Vanneste, S., Zhang, J., Simon, S., Covanova, M., Hayashi, K., Dhonukshe, P., Yang, Z., Bednarek, S.Y., Jones, A.M., Luschnig, C., Aniento, F., Zazimalova, E., and Friml, J. (2010). ABP1 Mediates Auxin Inhibition of Clathrin-Dependent Endocytosis in Arabidopsis. Cell 143, 111- 121.
    • Rojas-Pierce, M., Titapiwatanakun, B., Sohn, E.J., Fang, F., Larive, C.K., Blakeslee, J., Cheng, Y., Cuttler, S., Peer, W.A., Murphy, A.S., and Raikhel, N.V. (2007). Arabidopsis P-glycoprotein19 participates in the inhibition of Gravitropism by gravacin. Chemistry & Biology 14, 1366-1376.
    • Ross, J.J. (1998). Effects of auxin transport inhibitors on gibberellins in pea. Journal of Plant Growth Regulation 17, 141-146.
    • Ross, J.J., Weston, D.E., Davidson, S.E., and Reid, J.B. (2011). Plant hormone interactions: how complex are they? Physiologia Plantarum 141, 299-309.
    • Ross, J.J., O'Neill, D.P., Smith, J.J., Kerckhoffs, L.H.J., and Elliott, R.C. (2000). Evidence that auxin promotes gibberellin A(1) biosynthesis in pea. Plant Journal 21, 547-552.
    • Ross, J.J., O'Neill, D.P., Davidson, S.E., Clarke, V.C., Yamauchi, Y., Yamaguchi, S., Kamiya, Y., and Reid, J.B. (2010). Regulation of the gibberellin pathway by auxin and DELLA proteins. Planta 232, 1141-1149.
    • Rosso, M.G., Li, Y., Strizhov, N., Reiss, B., Dekker, K., and Weisshaar, B. (2003). An Arabidopsis thaliana T-DNA mutagenized population (GABI-Kat) for flanking sequence tag-based reverse genetics. Plant Molecular Biology 53, 247-259.
    • Ruyter-Spira, C., Kohlen, W., Charnikhova, T., van Zeijl, A., van Bezouwen, L., de Ruijter, N., Cardoso, C., Lopez-Raez, J.A., Matusova, R., Bours, R., Verstappen, F., and Bouwmeester, H. (2011). Physiological Effects of the Synthetic Strigolactone Analog GR24 on Root System Architecture in Arabidopsis: Another Belowground Role for Strigolactones? Plant Physiology 155, 721-734.
    • Ruzicka, K., Strader, L.C., Bailly, A., Yang, H.B., Blakeslee, J., Langowski, L., Nejedla, E., Fujita, H., Itoh, H., Syono, K., Hejatko, J., Gray, W.M., Martinoia, E., Geisler, M., Bartel, B., Murphy, A.S., and Friml, J. (2010). Arabidopsis PIS1 encodes the ABCG37 transporter of auxinic compounds including the auxin precursor indole-3-butyric acid. Proceedings of the National Academy of Sciences of the United States of America 107, 10749- 10753.
    • Saibo, N.J.M., Vriezen, W.H., Beemster, G.T.S., and Van der Straeten, D. (2003). Growth and stomata development of Arabidopsis hypocotyls are controlled by gibberellins and modulated by ethylene and auxins. Plant Journal 33, 989- 1000.
    • Saini, S., Sharma, I., Kaur, N., and Pati, P.K. (2013). Auxin: a master regulator in plant root development. Plant Cell Reports 32, 741-757.
    • Sakamoto, T., Kamiya, N., Ueguchi-Tanaka, M., Iwahori, S., and Matsuoka, M. (2001). KNOX homeodomain protein directly suppresses the expression of a gibberellin biosynthetic gene in the tobacco shoot apical meristem. Genes & Development 15, 581-590.
    • Sakamoto, T., Miyura, K., Itoh, H., Tatsumi, T., Ueguchi-Tanaka, M., Ishiyama, K., Kobayashi, M., Agrawal, G.K., Takeda, S., Abe, K., Miyao, A., Hirochika, H., Kitano, H., Ahikari, M., and Matsuoka, M. (2004). An overview of gibberellin metabolism enzyme genes and their related mutants in rice. Plant Physiology 135, 1863-1863.
    • Santelia, D., Vincenzetti, V., Azzarello, E., Bovet, L., Fukao, Y., Duchtig, P., Mancuso, S., Martinoia, E., and Geisler, M. (2005). MDR-like ABC transporter AtPGP4 is involved in auxin-mediated lateral root and root hair development. Febs Letters 579, 5399-5406.
    • Saotome, M., Shirahata, K., Nishimura, R., Yahaba, M., Kawaguchi, M., Syono, K., Kitsuwa, T., Ishii, Y., and Nakamura, T. (1993). The Identification of Indole-3-Acetic-Acid and Indole-3-Acetamide in the Hypocotyls of JapaneseCherry. Plant and Cell Physiology 34, 157-159.
    • Sasaki, A., Itoh, H., Gomi, K., Ueguchi-Tanaka, M., Ishiyama, K., Kobayashi, M., Jeong, D.H., An, G., Kitano, H., Ashikari, M., and Matsuoka, M. (2003). Accumulation of phosphorylated repressor for gibberellin signaling in an F-box mutant. Science 299, 1896-1898.
    • Sauer, M., and Kleine-Vehn, J. (2011). Auxin Binding Protein1: The Outsider. Plant Cell 23, 2033-2043.
    • Sauer, M., Robert, S., and Kleine-Vehn, J. (2013). Auxin: simply complicated. Journal of Experimental Botany 64, 2565-2577.
    • Sauer, M., Balla, J., Luschnig, C., Wisniewska, J., Reinohl, V., Friml, J., and Benkova, E. (2006). Canalization of auxin flow by Aux/IAA-ARF-dependent feedback regulation of PIN polarity. Genes & Development 20, 2902-2911.
    • Sauter, M., and Kende, H. (1992). Gibberellin-Induced Growth and Regulation of the Cell-Division Cycle in Deep-Water Rice. Planta 188, 362-368.
    • Scarpella, E., Marcos, D., Friml, J., and Berleth, T. (2006). Control of leaf vascular patterning by polar auxin transport. Genes & Development 20, 1015-1027.
    • Schreiber, S.L. (1998). Chemical genetics resulting from a passion for synthetic organic chemistry. Bioorganic & Medicinal Chemistry 6, 1127-1152.
    • Schroder, G., Waffenschmidt, S., Weiler, E.W., and Schroder, J. (1984). The TRegion of Ti Plasmids Codes for an Enzyme Synthesizing Indole-3-AceticAcid. European Journal of Biochemistry 138, 387-391.
    • Schruff, M.C., Spielman, M., Tiwari, S., Adams, S., Fenby, N., and Scott, R.J. (2006). The AUXIN RESPONSE FACTOR 2 gene of Arabidopsis links auxin signalling, cell division, and the size of seeds and other organs. Development 133, 251-261.
    • Schuetzer-Muehlbauer, M., Willinger, B., Egner, R., Ecker, G., and Kuchler, K. (2003). Reversal of antifungal resistance mediated by ABC efflux pumps from Candida albicans functionally expressed in yeast. International Journal of Antimicrobial Agents 22, 291-300.
    • Schwechheimer, C., Serino, G., Callis, J., Crosby, W.L., Lyapina, S., Deshaies, R.J., Gray, W.M., Estelle, M., and Deng, X.W. (2001). Interactions of the COP9 signalosome with the E3 ubiquitin ligase SCFTIR1 in mediating auxin response. Science 292, 1379-1382.
    • Serrani, J.C., Ruiz-Rivero, O., Fos, M., and Garcia-Martinez, J.L. (2008). Auxininduced fruit-set in tomato is mediated in part by gibberellins. Plant Journal 56, 922-934.
    • Sessions, A., Nemhauser, J.L., McColl, A., Roe, J.L., Feldmann, K.A., and Zambryski, P.C. (1997). ETTIN patterns the Arabidopsis floral meristem and reproductive organs. Development 124, 4481-4491.
    • Sessions, A., Burke, E., Presting, G., Aux, G., McElver, J., Patton, D., Dietrich, B., Ho, P., Bacwaden, J., Ko, C., Clarke, J.D., Cotton, D., Bullis, D., Snell, J., Miguel, T., Hutchison, D., Kimmerly, B., Mitzel, T., Katagiri, F., Glazebrook, J., Law, M., and Goff, S.A. (2002). A high-throughput Arabidopsis reverse genetics system. Plant Cell 14, 2985-2994.
    • Shani, E., Weinstain, R., Zhang, Y., Castillejo, C., Kaiserli, E., Chory, J., Tsien, R.Y., and Estelle, M. (2013). Gibberellins accumulate in the elongating endodermal cells of Arabidopsis root. Proceedings of the National Academy of Sciences of the United States of America, 1-6.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article