LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Eberlein, Claudia; Zietal, Robert (2012)
Publisher: American Physical Society
Languages: English
Types: Preprint
Subjects: QC, Physics - Atomic Physics, Quantum Physics

Classified by OpenAIRE into

arxiv: Physics::Atomic Physics, Physics::Atomic and Molecular Clusters
We study the interaction between a neutral atom or molecule and a conductor-patched dielectric surface. We model this system by a perfectly reflecting disc lying atop of a non-dispersive dielectric half-space, both interacting with the neutral atom or molecule. We assume the interaction to be non-retarded and at zero temperature. We find an exact solution to this problem. In addition we generate a number of other useful results. For the case of no substrate we obtain the exact formula for the van der Waals interaction energy of an atom near a perfectly conducting disc. We show that the Casimir-Polder force acting on an atom that is polarized in the direction normal to the surface of the disc displays intricate behaviour. This part of our results is directly relevant to recent matter-wave experiments in which cold molecules are scattered by a radially symmetric object in order to study diffraction patterns and the so-called Poisson spot. Furthermore, we give an exact expression for the non-retarded limit of the Casimir-Polder interaction between an atom and a perfectly-conducting bowl.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • [1] M. T. Homer Reid, A. W. Rodriguez, J. White, and Steven G. Johnson, Phys. Rev. Lett. 103, 040401 (2009).
    • [2] S. Scheel, S. Y. Buhman, Acta Physica Slovaca 58, 675 (2008).
    • [3] C. Eberlein, R. Zietal, arXiv:1207.0090.
    • [4] D. Geng et. al., Proc. Natl. Acad. Sci. U S A 109, 7992 (2012)
    • [5] C. Eberlein, R. Zietal, Phys. Rev. A 75, 032516 (2007).
    • [6] W. Thomson (Lord Kelvin), P. G. Tait, Journal de Mathematiques Pures et Appliqu´es, 12, 256 (1847).
    • [7] J. H. Jeans, Mathematical Theory of Electricity and Magnetism, Ch. VIII, (Cambridge University Press, 1908).
    • [8] The RHS of Eq. (20) contains an additional term proportional to δ(3)(r − s) G (T [r], T [r′]), which vanishes provided G (T [r], T [r′]) vanishes for T [r] → ∞.
    • [9] J. Wermer, Potential Theory, Lecture Notes in Mathematics 408, (Springer-Verlag, New York, 1974).
    • [10] Proceedings of the XXVIIth URSI General Assembly in Maastricht, Commission B (Fields and Waves)-B1 Electromagnetic Theory paper B1.P.8 (741) (August 2002).
    • [11] K. Nikoskinen, H. Wall´en, IEE Proc.-Sci. Meas. Technol., 153, 174 (2006).
    • [12] I. V. Lindell, Radio Science, 27, 1 (1992).
    • [13] C. Eberlein, R. Zietal, Phys. Rev. A 83, 052514 (2011).
    • [14] T. Reisinger, A. Patel, H. Reingruber, K. Fladischer, W. Ernst, G. Bracco, H. Smith, B. Holst, Phys. Rev. A 79, 053823 (2009).
    • [15] T. Juffmann, S. Nimmrichter, M. Arndt, H. Gleiter, K. Hornberger, arXiv:1009.1569.
    • [16] Y. Zhang, N. Grady, C. Ayala-Orozco, N. Halas, Nano Lett. 11, 5519 (2011).
    • [5] C. Eberlein and R. Zietal, Phys. Rev. A 86, 022111 (2012).
    • [6] D. Geng et al., Proc. Natl. Acad. Sci. USA 109, 7992 (2012).
    • [7] C. Eberlein and R. Zietal, Phys. Rev. A 75, 032516 (2007).
    • [8] W. Thomson (Lord Kelvin), J. Math. Pures Appl. 12, 256 (1847).
    • [9] J. H. Jeans, Mathematical Theory of Electricity and Magnetism (Cambridge University Press, Cambridge, UK, 1908), Ch. VIII.
    • [10] The right-hand side of Eq. (20) contains an additional term proportional to δ(3)(r − s) G (T [r],T [r′]), which vanishes provided that G (T [r],T [r′]) vanishes for T [r] → ∞.
    • [11] J. Wermer, Potential Theory, Lecture Notes in Mathematics Vol. 408 (Springer-Verlag, New York, 1974).
    • [12] K. Nikoskinen, Proceedings of the XXVIIth URSI General Assembly in Maastricht, Commission B (Fields and Waves)- B1 Electromagnetic Theory Paper No. B1.P.8 (741), 2002 (unpublished).
    • [13] K. Nikoskinen and H. Walle´n, IEEE Proc. Sci. Meas. Technol. 153, 174 (2006).
    • [14] I. V. Lindell, Radio Sci. 27, 1 (1992).
    • [15] C. Eberlein and R. Zietal, Phys. Rev. A 83, 052514 (2011).
    • [16] T. Reisinger, A. A. Patel, H. Reingruber, K. Fladischer, W. E. Ernst, G. Bracco, H. I. Smith, and B. Holst, Phys. Rev. A 79, 053823 (2009).
    • [17] T. Juffmann, S. Nimmrichter, M. Arndt, H. Gleiter, and K. Hornberger, Found. Phys. 42, 98 (2012).
    • [18] Y. Zhang, N. Grady, C. Ayala-Orozco, and N. Halas, Nano Lett. 11, 5519 (2011).
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article