LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Publisher: Nature Publishing Group
Languages: English
Types: Article
Subjects: QC, QE
Photovoltaics based on tin halide perovskites have not yet benefitted from the same intensive research effort that has propelled lead perovskite photovoltaics to >20% power conversion efficiency, due to the susceptibility of tin perovskites to oxidation, the low energy of defect formation and the difficultly in forming pin-hole free films. Here we report CsSnI3 perovskite photovoltaic devices without a hole-selective interfacial layer that exhibit a stability 10 times greater than devices with the same architecture using methylammonium lead iodide perovskite, and the highest efficiency to date for a CsSnI3 photovoltaic: 3.56%. The latter results in large part from a high device fill-factor, achieved using a strategy that removes the need for an electron blocking layer or an additional processing step to minimise the pinhole density in the perovskite film, based on co-depositing the perovskite precursors with SnCl2. These two findings raise the prospect that this class of lead-free perovskite photovoltaic may yet prove viable for applications. \ud \ud
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Kojima, A., Teshima, K., Shirai, Y. & Miyasaka, T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050-6051 (2009).
    • Hao, F., Stoumpos, C. C., Cao, D. H., Chang, R. P. H. & Kanatzidis, M. G. Lead-free solid-state organic-inorganic halide perovskite solar cells. Nat. Photonics 8, 489-494 (2014).
    • Xu, P., Chen, S., Xiang, H.-J., Gong, X.-G. & Wei, S.-H. Influence of Defects and Synthesis Conditions on the Photovoltaic Performance of Perovskite Semiconductor CsSnI3. Chem. Mater. 26, 6068-6072 (2014).
    • Kumar, M. H. et al. Lead-Free Halide Perovskite Solar Cells with High Photocurrents Realized Through Vacancy Modulation. Adv. Mater. 26, 7122-7127 (2014).
    • Yokoyama, T. et al. Overcoming Short-Circuit in Lead-Free CH3NH3SnI3 Perovskite Solar Cells via Kinetically Controlled Gas-Solid Reaction Film Fabrication Process. J.
    • Phys. Chem. Lett. 7, 776-782 (2016).
    • Shockley, W. & Queisser, H. J. Detailed Balance Limit of Efficiency of p-n Junction Solar Cells. J. Appl. Phys. 32, 510-519 (1961).
    • Chung, I. et al. CsSnI3: Semiconductor or metal? High electrical conductivity and strong near-infrared photoluminescence from a single material. High hole mobility and phase-transitions. J. Am. Chem. Soc. 134, 8579-8587 (2012).
    • Huang, L. & Lambrecht, W. R. L. Electronic band structure, phonons, and exciton binding energies of halide perovskites CsSnCl3, CsSnBr3, and CsSnI3. Phys. Rev. B 88, 165203 (2013).
    • Chen, Z. et al. Photoluminescence study of polycrystalline CsSnI3 thin films: Determination of exciton binding energy. J. Lumin. 132, 345-349 (2012).
    • 14. Zhang, J. et al. Energy barrier at the N719-dye/CsSnI3 interface for photogenerated holes in dye-sensitized solar cells. Sci. Rep. 4, 6954 (2014).
    • Stoumpos, C. C., Malliakas, C. D. & Kanatzidis, M. G. Semiconducting tin and lead 17. Sabba, D. et al. Impact of Anionic Br- Substitution on Open Circuit Voltage in Lead Free Perovskite ( CsSnI3-xBrx ) Solar Cells . J. Phys. Chem. C 119, 1763-1767 (2015).
    • Chen, Z., Wang, J. J., Ren, Y., Yu, C. & Shum, K. Schottky solar cells based on CsSnI3 thin-films. Appl. Phys. Lett. 101, 93901 (2012).
    • Chem. A 3, 11631-11640 (2015).
    • 20. Koh, T. M. et al. Formamidinium tin-based perovskite with low Eg for photovoltaic applications. J. Mater. Chem. A 3, 14996-15000 (2015).
    • 21. Zhang, M. et al. Low-temperature processed solar cells with formamidinium tin halide perovskite/fullerene heterojunctions. Nano Res. 9, 1570-1577 (2016).
    • Werker, W. Die Kristallstruktur des Rb2SnI6 und Cs2SnI6. Recl. des Trav. Chim. des Pays-Bas 58, 257-258 (1939).
    • 23. Lee, B. et al. Air-Stable Molecular Semiconducting Iodosalts for Solar Cell Applications: Cs2SnI6 as a Hole Conductor. J. Am. Chem. Soc. 136, 15379-15385 (2014).
    • 24. Xiao, Z., Zhou, Y., Hosono, H. & Kamiya, T. Intrinsic defects in a photovoltaic perovskite variant Cs2SnI6. Phys. Chem. Chem. Phys. 17, 18900-18903 (2015).
    • 25. Peedikakkandy, L. & Bhargava, P. Composition Dependent Optical, Structural and Photoluminescence Characteristics of Cesium Tin Halide Perovskites. RSC Adv. 6, 22
    • 26. Shannon, R. D. Revised Effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. Sect. A Found. Adv. A32, 751-767 (1976).
    • Chem. 50, 576-585 (1978).
    • 28. Alonzo, G. et al. Mössbauer, Far-Infrared, and XPS Investigations of SnCl2 and SnCl4 Introduced in Polyconjugated Monosubstituted Acetylene Matrices. Appl. Spectrosc. 49, 237-240 (1995).
    • 29. Zhang, Y. et al. Flexible, hole transporting layer-free and stable CH3NH3PbI3/ PC61BM planar heterojunction perovskite solar cells. Org. Electron. 30, 281-288 (2016).
    • Chung, I., Lee, B., He, J., Chang, R. P. H. & Kanatzidis, M. G. All-solid-state dyesensitized solar cells with high efficiency. Nature 485, 486-489 (2012).
    • 31. Tyler, M. S., Nadeem, I. M. & Hatton, R. A. An electrode design rule for high performance top-illuminated organic photovoltaics. Mater. Horiz. 3, 348-354 (2016).
    • 32. Yan, Y. Perovskite solar cells: High voltage from ordered fullerenes. Nat. Energy 1, 15007 (2016).
    • 33. Shao, Y., Yuan, Y. & Huang, J. Correlation of energy disorder and open-circuit voltage in hybrid perovskite solar cells. Nat. Energy 1, 15001 (2016).
    • 34. Saparov, B. et al. Thin-film deposition and characterization of a Sn-deficient perovskite derivative Cs2SnI6. Chem. Mater. 28, 2315-2322 (2016).
    • Glen, T. S. et al. Dependence on Material Choice of Degradation of Organic Solar Cells Following Exposure to Humid Air. J. Polym. Sci. Part B Polym. Phys. 54, 216- 224 (2016).
  • No related research data.
  • No similar publications.

Share - Bookmark

Funded by projects

Cite this article