LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Publisher: American Physical Society
Languages: English
Types: Article
Subjects: QC350467, other
We report, to the best of our knowledge, the first exact analytical bistable dark spatial solitons of a nonlinear Helmholtz equation with a cubic-quintic refractive-index model. Our analysis begins with an investigation of the modulational instability characteristics of Helmholtz plane waves. We then derive a dark soliton by mapping the desired asymptotic form onto a uniform background field, and obtain a more general solution by deploying rotational invariance laws in the laboratory frame. The geometry of the new soliton is explored in detail, and a range of new physical predictions is uncovered. Particular attention is paid to the unified phenomena of arbitrary-angle off-axis propagation and non-degenerate bistability. Crucially, the corresponding solution of paraxial theory emerges in a simultaneous multiple limit. We conclude with a set of computer simulations that examine the role of Helmholtz dark solitons as robust attractors.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • G. I. Stegeman and M. Segev, Science 286, 1518 (1999).
    • V. E. Zakharov and A. B. Shabat, Sov. Phys. JETP 34, 62 (1972); ibid. 37, 823 (1973); J. P. Gordon, Opt. Lett. 8, 596 (1983); M. J. Ablowitz et al., J.
    • Opt. Soc. Am. B 14, 1788 (1997); O. Cohen et al., Opt. Lett. 27, 2013 (2002); Phys. Rev. Lett. 89, 133901 (2002).
    • A. B. Aceves, J. V. Moloney, and A. C. Newell, Phys. Rev. A 39, 1809 (1989); ibid. 39, 1828 (1989); Phys. Lett. A 129, 231 (1988); Opt. Lett. 13, 1002 (1988).
    • P. Chamorro-Posada and G. S. McDonald, Phys. Rev. E 74, 036609 (2006).
    • J. S├ínchez-Curto, P. Chamorro-Posada, and G. S. McDonald, J. Opt. A: Pure Appl. Opt. 11, 054015 (2009); Opt. Lett. 32, 1126 (2007).
    • P. Mandel, M. Georgiou, and T. Erneux, Phys. Rev. A 47, 4277 (1993); T.
    • Erneux and P. Mandel, ibid. 28, 896 (1983).
    • L. A. Lugiato and C. Oldano, Phys. Rev. A 37, 3896 (1988); R. Bonifacio and L. A. Lugiato, ibid. 18, 1129 (1978).
    • G. S. McDonald and W. J. Firth, J. Opt. Soc. Am. B 10, 1081 (1993); ibid. 7, 1328 (1990); J. Mod. Opt. 37, 613 (1990).
    • A. E. Kaplan, Sov. Phys. JETP 45, 896 (1977); JETP Lett. 24, 114 (1976); P. W. Smith and W. J. Tomlinson, IEEE J. Quantum Electron. QE-20, 30 (1984); P. W. Smith et al., Appl. Phys. Lett. 35, 846 (1979).
    • A. E. Kaplan, Phys. Rev. Lett. 55, 1291 (1985); IEEE J. Quantum Electron.
    • QE-21, 1538 (1985); A. E. Kaplan and C. T. Law, IEEE J. Quantum Electron.
    • QE-21, 1529 (1985).
    • J. A. Goldstone and E. Garmire, Phys. Rev. Lett. 53, 910 (1984).
    • T. T. Shi and S. Chi, Opt. Lett. 15, 1123 (1990).
    • W. J. Firth et al., J. Opt. Soc. Am. B 19, 747 (2002).
    • R. H. Enns, S. S. Rangnekar, and A. E. Kaplan, Phys. Rev. A 36, 1270 (1987); Phys. Rev. Lett. 57, 778 (1986); A. E. Kaplan, Phys. Rev. Lett. 57, 779 (1986).
    • R. H. Enns, S. S. Rangnekar, and A. E. Kaplan, Phys. Rev. A 35, 466 (1987); R. H. Enns and S. S. Rangnekar, Opt. Lett. 12, 108 (1987); IEEE J. Quantum Electron. QE-23, 1199 (1987).
    • S. Gatz and J. Herrmann, IEEE J. Quantum Electron. 28, 1732 (1992); J.
    • Hermann, Opt. Commun. 87, 161 (1992).
    • S. Gatz and J. Herrmann, Opt. Lett. 17, 484 (1992); J. Opt. Soc. Am. B 8, 2296 (1991); J. Herrmann, ibid. 8, 1507 (1991).
    • W. Krolikowski and B. Luther-Davies, Opt. Lett. 17, 1414 (1992).
    • J. M. Christian, G. S. McDonald, and P. Chamorro-Posada, Phys. Rev. A 76, 033833 (2007); J. Opt. Soc. Am. B 26, 2323 (2009).
    • F. G. Bass, V. V. Konotop, and S. A. Puzenko, Phys. Rev. A 46, 4185 (1992); L. J. Mulder and R. H. Enns, IEEE J. Quantum Electron. 25, 2205 (1989).
    • W. Krolikowski and B. Luther-Davies, Opt. Lett. 18, 188 (1993).
    • J. Herrmann, Opt. Commun. 91, 337 (1992).
    • D. E. Pelinovsky, Y. S. Kivshar, and V. V. Afanasjev, Phys. Rev. E 54, 2015 (1996); Y. S. Kivshar and X. Yang, Phys. Rev. E 49, 1657 (1994).
    • T. A. Laine and A. T. Friberg, J. Opt. Soc. Am. B 17, 751 (2000); A. P.
    • Sheppard and M. Haelterman, Opt. Lett. 23, 1820 (1998); G. Fibich, Phys.
    • Rev. Lett. 76, 4356 (1996); M. D. Feit and J. A. Fleck, J. Opt. Soc. Am. B 5, 633 (1988).
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article