Remember Me
Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:

OpenAIRE is about to release its new face with lots of new content and services.
During September, you may notice downtime in services, while some functionalities (e.g. user registration, login, validation, claiming) will be temporarily disabled.
We apologize for the inconvenience, please stay tuned!
For further information please contact helpdesk[at]openaire.eu

fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Papaharalabos, G.; Stinchcombe, A.; Horsfield, I.; Melhuish, C.; Greenman, J.; Ieropoulos, I. (2017)
Publisher: The Electrochemical Society
Languages: English
Types: Article
This study presents a novel method for avoiding cell reversal whilst optimising energy harvesting from stacked Microbial Fuel\ud Cells (MFCs) by dynamically reconfiguring the electrical connections between them. The sequential changing of in-parallel and in-series electrical connections in an 8-MFC stack resulted in energy being transferred twice as fast into a super-capacitor avoiding cell reversal in MFCs as opposed to a fixed in-series configuration. This approach, allows for a lower internal resistance state within the stack compared to a fixed electrical configuration. This is critical in the initial stages of energy extraction from MFCs connected electrically in-series where the impedance of the capacitor is drawing high levels of current and cell reversals are likely to occur and\ud hinder performance. Automation of electrical connections doubled the extracted power from the stack whilst halving the charging times without any cell reversal occurrence. The electrical reconfiguring of MFCs was performed by a USB-powered switch-box that modulated the stack’s connections. This lead to the development of an energy autonomous switch-box circuitry powered solely by the MFC stack with negligible impact on the overall energy harvesting efficiency (i.e. above 90%).\ud © The Author(s) 2016. Published by ECS. This is an open access article distributed under the terms of the Creative Commons\ud Attribution 4.0 License (CC BY, http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse of the work in any medium, provided the original work is properly cited. [DOI: 10.1149/2.0081703jes] All rights reserved.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 1. P. Aelterman, K. Rabaey, H. T. Pham, N. Boon, and W. Verstraete, Environ. Sci. Technol., 40, 3388 (2006).
    • 2. I. Ieropoulos, J. Greenman, C. Melhuish, and I. Horsfield, Proc. Alife XII Conf., 733 (2010).
    • 3. M. Rahimnejad, A. A. Ghoreyshi, G. D. Najafpour, H. Younesi, and M. Shakeri, Int. J. Hydrogen Energy, 37, 5992 (2012).
    • 4. Z. Li, L. Yao, L. Kong, and H. Liu, Bioresour. Technol., 99, 1650 (2008).
    • 5. J. Choi and Y. Ahn, J. Environ. Manage., 130, 146 (2013).
    • 6. P. Ledezma, J. Greenman, and I. Ieropoulos, Bioresour. Technol., 134, 158 (2013).
    • 7. H.-S. Lee, W. F. J. Vermaas, and B. E. Rittmann, Trends Biotechnol., 28, 262 (2010).
    • 8. D. Jiang et al., Int. J. Hydrogen Energy, 36, 876 (2011).
    • 9. J. An and H.-S. Lee, RSC Adv., 3, 14021 (2013).
    • 10. H.-S. Lee and B. E. Rittmann, Int. J. Hydrogen Energy, 35, 920 (2010).
    • 11. H.-S. Lee and B. E. Rittmann, Environ. Sci. Technol., 44, 948 (2010).
    • 12. I. Ieropoulos, J. Greenman, and C. Melhuish, Int. J. Energy Res., 32, 1228 (2008).
    • 13. L. Zhuang et al., Bioresour. Technol., 106, 82 (2012).
    • 14. S.-E. Oh and B. E. Logan, J. Power Sources, 167, 11 (2007).
    • 15. I. Ieropoulos, J. Greenman, and C. Melhuish, Bioelectrochemistry, 78, 44 (2010).
    • 16. J. An and H.-S. Lee, ChemSusChem, 7, 1689 (2014).
    • 17. H. Wang, J. Park, and Z. J. Ren, Environ. Sci. Technol., 19, 3267 (2015).
    • 18. Y. Zhang and I. Angelidaki, Biosens. Bioelectron., 35, 265 (2012).
    • 19. J. An, B. Kim, I. S. Chang, and H.-S. Lee, J. Power Sources, 278, 534 (2015).
    • 20. H. C. Boghani et al., J. Power Sources, 269, 363 (2014).
    • 21. Y. Kim, M. C. Hatzell, A. J. Hutchinson, and B. E. Logan, Energy Environ. Sci., 4, 4662 (2011).
    • 22. R. P. Pinto, B. Srinivasan, S. R. Guiot, and B. Tartakovsky, Water Res., 45, 1571 (2011).
    • 23. G. Papaharalabos et al., J. Power Sources, 272, 34 (2014).
    • 24. C. Santoro et al., Bioresour. Technol., 163C, 54 (2014).
    • 25. G. Papaharalabos et al., Int. J. Hydrogen Energy, 38, 11552 (2013).
    • 26. P. Ledezma et al., Sustain. Energy Technol. Assessments, 5, 1 (2014).
    • 27. A. Dekker, A. Ter Heijne, M. Saakes, H. V. M. Hamelers, and C. J. N. Buisman, Environ. Sci. Technol., 43, 9038 (2009).
    • 28. C. I. Torres et al., Environ. Sci. Technol., 43, 9519 (2009).
    • 29. P. Aelterman, S. Freguia, J. Keller, W. Verstraete, and K. Rabaey, Appl. Microbiol. Biotechnol., 78, 409 (2008).
    • 30. J. Wei, P. Liang, X. Cao, and X. Huang, Environ. Sci. Technol., 44, 3187 (2010).
    • 31. McKissock, B. Loyselle, P. Vogel, and Elisa, Guidelines on Lithium ion Battery Use in Space, p. 46, NASA Glenn Research Center, Cleveland, Ohio, (2009).
    • 32. V. Kiran and B. Gaur, Rev. Chem. Eng., 29, 189 (2013).
    • 33. P. K. Wu, J. C. Biffinger, L. A. Fitzgerald, and B. R. Ringeisen, Process Biochem., 47, 1620 (2012).
    • 34. C. Erbay, S. Carreon-Bautista, E. Sanchez-Sinencio, and A. Han, Environ. Sci. Technol., 48, 13992 (2014).
    • 35. S. Adami et al., Int. Conf. Electron. Circuits, Syst., 398 (2011).
    • 36. X. Zhang et al., IEEE Trans. Power Electron., 30, 2041 (2015).
    • 37. N. Degrenne et al., Proc. 2011 14th Eur. Conf. Power Electron. Appl., 1 (2011).
    • 38. N. Degrenne et al., 889 (2011).
    • 39. M. Alaraj, Z. J. Ren, and J.-D. Park, J. Power Sources, 247, 636 (2014).
    • 40. J.-D. Park and Z. Ren, J. Power Sources, 208, 322 (2012).
  • No related research data.
  • No similar publications.

Share - Bookmark

Funded by projects

Cite this article

Cookies make it easier for us to provide you with our services. With the usage of our services you permit us to use cookies.
More information Ok