You have just completed your registration at OpenAire.
Before you can login to the site, you will need to activate your account.
An e-mail will be sent to you with the proper instructions.
Important!
Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version
of the site upon release.
Publisher: Society for Industrial and Applied Mathematics
Languages: English
Types: Article
Subjects:510
In this paper we consider the impedance boundary value problem for the Helmholtz equation in a half-plane with piecewise constant boundary data, a problem which models, for example, outdoor sound propagation over inhomogeneous. at terrain. To achieve good approximation at high frequencies with a relatively low number of degrees of freedom, we propose a novel Galerkin boundary element method, using a graded mesh with smaller elements adjacent to discontinuities in impedance and a special set of basis functions so that, on each element, the approximation space contains polynomials ( of degree.) multiplied by traces of plane waves on the boundary. We prove stability and convergence and show that the error in computing the total acoustic field is O( N-(v+1) log(1/2) N), where the number of degrees of freedom is proportional to N logN. This error estimate is independent of the wavenumber, and thus the number of degrees of freedom required to achieve a prescribed level of accuracy does not increase as the wavenumber tends to infinity.
[1] T. Abboud, J. C. Ne´de´lec, and B. Zhou, M´ethodes des ´equations int´egrales pour les hautes fr´equences, C.R. Acad. Sci. I Math., 318 (1994), pp. 165-170.
[2] K. E. Atkinson, The Numerical Solution of Integral Equations of the Second Kind, Cambridge University Press, Cambridge, UK, 1997.
[3] K. Attenborough, Acoustical impedance models for outdoor ground surfaces, J. Sound Vib., 99 (1985), pp. 521-544.
[4] I. Babuˇska and J. Melenk, The partition of unity method, Internat. J. Numer. Meth. Engrg., 40 (1997), pp. 727-758.
[7] P. Boulanger, K. Attenborough, and Q. Qin, Effective impedance of surfaces with porous roughness: Models and data, J. Acoust. Soc. Am., 117 (2005), pp. 1146-1156.
[8] P. Boulanger, K. Attenborough, S. Taherzadeh, T. WatersFuller, and K. M. Li, Ground effect over hard rough surfaces, J. Acoust. Soc. Am., 104 (1998), pp. 1474-1482.
[9] O. Bruno and L. Kunyansky, A fast, high-order algorithm for the solution of surface scattering problems: Basic implementation, tests and applications, J. Comput. Phys., 169 (2001), pp. 80-110.
[10] O. P. Bruno, C. A. Geuzaine, J. A. Monro, Jr., and F. Reitich, Prescribed error tolerances within fixed computational times for scattering problems of arbitrarily high frequency: The convex case, Philos. Trans. R. Soc. London A, 362 (2004), pp. 629-645.
[11] O. P. Bruno, C. A. Geuzaine, and F. Reitich, A new high-order high-frequency integral equation method for the solution of scattering problems i: Single-scattering configurations, in Proceedings of the 20th Annual Review of Progress in Applied Computational Electromagnetics, Syracuse, NY, 2004.
[12] O. P. Bruno, C. A. Geuzaine, and F. Reitich, A new high-order high-frequency integral equation method for the solution of scattering problems ii: Multiple-scattering configurations, Proceedings of the 20th Annual Review of Progress in Applied Computational Electromagnetics, Syracuse, NY, 2004.
[13] O. Cessenat and B. Despre´s, Application of an ultra weak variational formulation of elliptic PDEs to the two-dimensional Helmholtz problem, SIAM J. Numer. Anal., 35 (1998), pp. 255-299.
[14] O. Cessenat and B. Despre´s, Using plane waves as base functions for solving time harmonic equations with the ultra weak variational formulation, J. Comp. Acoust., 11 (2003), pp. 227-238.
[15] S. N. Chandler-Wilde, Ground Effects in Environmental Sound Propagation, Ph.D. thesis, University of Bradford, UK, 1988.
[16] S. N. Chandler-Wilde, The impedance boundary value problem for the Helmholtz equation in a half-plane, Math. Methods Appl. Sci., 20 (1997), pp. 813-840.
[17] S. N. Chandler-Wilde and D. C. Hothersall, Sound propagation above an inhomogeneous impedance plane, J. Sound Vib., 98 (1985), pp. 475-491.
[18] S. N. Chandler-Wilde and D. C. Hothersall, Efficient calculation of the Green's function for acoustic propagation above a homogeneous impedance plane, J. Sound Vib., 180 (1995), pp. 705-724.
[19] S. N. Chandler-Wilde and S. Langdon, A Galerkin boundary element method for high frequency scattering by convex polygons (in preparation).
[21] S. N. Chandler-Wilde, M. Rahman, and C. R. Ross, A fast two-grid and finite section method for a class of integral equations on the real line with application to an acoustic scattering problem in the half-plane, Numer. Math., 93 (2002), pp. 1-51.
[22] S. H. Christiansen and J. C. Ne´de´lec, Preconditioners for the numerical solution of boundary integral equations from electromagnetism, C.R. Acad. Sci. I Math., 331 (2000), pp. 733- 738.
[23] D. Colton and R. Kress, Integral Equation Methods in Scattering Theory, John Wiley, New York, 1983.
[24] E. Darrigrand, Coupling of fast multipole method and microlocal discretization for the 3-D Helmholtz equation, J. Comput. Phys., 181 (2002), pp. 126-154.
[25] E. Darve and P. Have´, A fast multipole method for maxwell equations stable at all frequencies, Philos. Trans. R. Soc. London A, 362 (2004), pp. 603-628.
[26] A. de La Bourdonnaye, A microlocal discretization method and its utilization for a scattering problem, C.R. Acad. Sci. I Math., 318 (1994), pp. 385-388.
[27] A. de La Bourdonnaye and M. Tolentino, Reducing the condition number for microlocal discretization problems, Philos. Trans. R. Soc. London A, 362 (2004), pp. 541-559.
[28] M. Ganesh, S. Langdon, and I. H. Sloan, Efficient evaluation of highly oscillatory acoustic scattering surface integrals, Reading University Numerical Analysis Report 6/05, submitted for publication to J. Comp. Appl. Math.
[29] E. Giladi and J. Keller, A hybrid numerical asymptotic method for scattering problems, J. Comput. Phys., 174 (2001), pp. 226-247.
[30] D. Habault, Sound propagation above an inhomogeneous plane, J. Sound Vib., 100 (1985), pp. 55-67.
[31] D. C. Hothersall and J. N. B. Harriott, Approximate models for sound propagation above multi-impedance plane boundaries, J. Acoust. Soc. Am., 97 (1995), pp. 918-926.
[32] T. Huttunen, P. Monk, F. Collino, and J. P. Kaipio, The ultra-weak variational formulation for elastic wave problems, SIAM J. Sci. Comput., 25 (2004), pp. 1717-1742.
[33] F. Ihlenburg, Finite Element Analysis of Acoustic Scattering, Springer-Verlag, New York, 1998.
[34] A. Iserles, On the numerical quadrature of highly-oscillating integrals I: Fourier transforms, IMA J. Numer. Anal., 24 (2004), pp. 365-391.
[35] A. Iserles, On the numerical quadrature of highly-oscillating integrals II: Irregular oscillations, IMA J. Numer. Anal., 25 (2005), pp. 25-44.
[36] I. M. Kaganova, The impedance boundary conditions and effective surface impedance of inhomogeneous metals, Phys. B Cond. Matter, 338 (2003), pp. 38-43.
[38] S. Langdon and S. N. Chandler-Wilde, A Galerkin boundary element method for an acoustic scattering problem, with convergence rate independent of frequency, in Proceedings of the 4th UK Conference on Boundary Integral Methods, S. Amini, ed., Salford University Press, 2003, pp. 67-76.
[39] S. Langdon and S. N. Chandler-Wilde, A GTD-based boundary element method for a surface scattering problem, Proc. Inst. Acoustics, 25 (2003), pp. 224-233.
[40] S. Langdon and I. G. Graham, Boundary integral methods for singularly perturbed boundary value problems, IMA J. Numer. Anal., 21 (2001), pp. 217-237.
[41] P. Monk and D. Q. Wang, A least squares method for the Helmholtz equation, Comput. Methods Appl. Math., 175 (1999), pp. 121-136.
[42] P. M. Morse and K. U. Ingard, Theoretical Acoustics, McGraw-Hill, New York, 1968.
[43] E. Perrey-Debain, O. Lagrouche, P. Bettess, and J. Trevelyan, Plane-wave basis finite elements and boundary elements for three-dimensional wave scattering, Philos. Trans. R. Soc. London A, 362 (2004), pp. 561-577.
[44] E. Perrey-Debain, J. Trevelyan, and P. Bettess, Plane wave interpolation in direct collocation boundary element method for radiation and wave scattering: Numerical aspects and applications, J. Sound Vib., 261 (2003), pp. 839-858.
[45] E. Perrey-Debain, J. Trevelyan, and P. Bettess, Use of wave boundary elements for acoustic computations, J. Comput. Acoust., 11 (2003), pp. 305-321.
[47] J. R. Poirier, A. Bendali, and P. Borderies, Impedance boundary condition for rapidly oscillating surface scatterers, in Mathematical and Numerical Aspects of Wave Propagation, A. Bermudez, D. Gomez, P. Joly, and J. E. Roberts, eds., SIAM, Philadelphia, 2000, pp. 528-532.
[48] M. Shimoda, R. Iwaki, and M. Miyoshi, Scattering of an electromagnetic plane wave by a plane with local change of surface impedance, IEICE Trans. Electronics, E87C (2004), pp. 44-51.