LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Publisher: Royal Society of Chemistry
Languages: English
Types: Article
Subjects: QD
The renewed interest in magnetite (Fe3O4) as a major phase in different types of catalysts has led us to\ud study the oxidation–reduction behaviour of its most prominent surfaces. We have employed computer\ud modelling techniques based on the density functional theory to calculate the geometries and surface\ud free energies of a number of surfaces at different compositions, including the stoichiometric plane, and\ud those with a deficiency or excess of oxygen atoms. The most stable surfaces are the (001) and (111),\ud leading to a cubic Fe3O4 crystal morphology with truncated corners under equilibrium conditions. The\ud scanning tunnelling microscopy images of the different terminations of the (001) and (111) stoichiometric\ud surfaces were calculated and compared with previous reports. Under reducing conditions, the creation\ud of oxygen vacancies in the surface leads to the formation of reduced Fe species in the surface in the\ud vicinity of the vacant oxygen. The (001) surface is slightly more prone to reduction than the (111), due to\ud the higher stabilisation upon relaxation of the atoms around the oxygen vacancy, but molecular oxygen\ud adsorbs preferentially at the (111) surface. In both oxidized surfaces, the oxygen atoms are located on\ud bridge positions between two surface iron atoms, from which they attract electron density. The oxidised\ud state is thermodynamically favourable with respect to the stoichiometric surfaces under ambient conditions,\ud although not under the conditions when bulk Fe3O4 is thermodynamically stable with respect to Fe2O3.\ud This finding is important in the interpretation of the catalytic properties of Fe3O4 due to the presence of\ud oxidised species under experimental conditions.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 1 W. Weiss and W. Ranke, Prog. Surf. Sci., 2002, 70, 1-151.
    • 2 S.-S. Chen and Updated by Staff, Kirk-Othmer Encyclopedia of Chemical Technology, John Wiley & Sons, Inc., 2006.
    • 3 D. H. James and W. M. Castor, Ullmann's Encyclopedia of Industrial Chemistry, Wiley-VCH Verlag GmbH & Co. KGaA, 2011, pp. 529-544.
    • 4 J. S. Campbell, P. Craven and P. W. Young, Catalyst Handbook, Wolfe Scientific Books, 1970, pp. 97-126.
    • 5 D. G. Rethwisch, J. Phillips, Y. Chen, T. F. Hayden and J. A. Dumesic, J. Catal., 1985, 91, 167-180.
    • 6 J. C. Gonzalez, M. G. Gonzalez, M. A. Laborde and N. Moreno, Appl. Catal., 1986, 20, 3-13.
    • 7 S. Li, G. D. Meitzner and E. Iglesia, J. Phys. Chem. B, 2001, 105, 5743-5750.
    • 8 G. C. Bond, Heterogeneous Catalysis; Principles and Applications, Clarendon Press, Oxford, 1974.
    • 9 G. A. Somorjai and M. Salmeron, in Homogeneous and Heterogeneous Photocatalysis, ed. E. Pelizzetti and N. Serpone, D. Reidel Publ. Co., Doordrecht, The Netherlands, NATO ASI Series C, 1986, vol. 174, pp. 445-478.
    • 10 S. Topham, in Catalysis: Science and Technology, ed. J. R. Anderson, Springer, Berlin, 1985, vol. 7, pp. 1-50.
    • 11 G. W. Bridger and C. B. Snowden, Catalyst Handbook, Wolfe Scientific Books, 1970, pp. 126-147.
    • 12 R. M. Cornell and U. Schwertmann, The Iron Oxides, WileyVCH Verlag GmbH & Co. KGaA, Weinheim, FRG, 2nd edn, 2003.
    • 13 F. dos Santos Coelho, J. D. Ardisson, F. C. C. Moura, R. M. Lago, E. Murad and J. D. Fabris, Chemosphere, 2008, 71, 90-96.
    • 14 Z. Zhang and S. Satpathy, Phys. Rev. B: Condens. Matter Mater. Phys., 1991, 44, 13319-13331.
    • 15 A. Roldan, D. Santos-Carballal and N. H. de Leeuw, J. Chem. Phys., 2013, 138, 204712.
    • 16 R. J. Hill, J. R. Craig and G. V. Gibbs, Phys. Chem. Miner., 1979, 4, 317-339.
    • 17 J. P. Wright, J. P. Attfield and P. G. Radaelli, Phys. Rev. B: Condens. Matter Mater. Phys., 2002, 66, 214422.
    • 18 U. Lins, C. N. Keim, F. F. Evans, M. Farina and P. R. Buseck, Geomicrobiol. J., 2007, 24, 43-50.
    • 19 D. Faivre and D. Schu¨ler, Chem. Rev., 2008, 108, 4875-4898.
    • 20 J. P. Bradley, R. P. Harvey and H. Y. McSween Jr., Geochim. Cosmochim. Acta, 1996, 60, 5149-5155.
    • 21 D. S. McKay, E. K. Gibson Jr., K. L. Thomas-Keprta, H. Vali, C. S. Romanek, S. J. Clemett, X. D. F. Chillier, C. R. Maechling and R. N. Zare, Science, 1996, 273, 924-930.
    • 22 L. Zhao, H. Zhang, Y. Xing, S. Song, S. Yu, W. Shi, X. Guo, J. Yang, Y. Lei and F. Cao, Chem. Mater., 2008, 20, 198-204.
    • 23 D. Faivre, N. Menguy, F. Guyot, O. Lopez and P. Zuddas, Am. Mineral., 2005, 90, 1793-1800.
    • 24 S. A. Chambers, S. Thevuthasan and S. A. Joyce, Surf. Sci., 2000, 450, L273-L279.
    • 25 A. V. Mijiritskii and D. O. Boerma, Surf. Sci., 2001, 486, 73-81.
    • 26 B. Stanka, W. Hebenstreit, U. Diebold and S. A. Chambers, Surf. Sci., 2000, 448, 49-63.
    • 27 F. C. Voogt, T. Fujii, P. J. M. Smulders, L. Niesen, M. A. James and T. Hibma, Phys. Rev. B: Condens. Matter Mater. Phys., 1999, 60, 11193-11206.
    • 28 G. S. Parkinson, Z. Novotn´y, P. Jacobson, M. Schmid and U. Diebold, Surf. Sci., 2011, 605, L42-L45.
    • 29 R. Pentcheva, F. Wendler, H. L. Meyerheim, W. Moritz, N. Jedrecy and M. Scheffler, Phys. Rev. Lett., 2005, 94, 126101.
    • 30 M. Fonin, R. Pentcheva, Y. S. Dedkov, M. Sperlich, D. V. Vyalikh, M. Scheffler, U. Ru¨diger and G. Gu¨ntherodt, Phys. Rev. B: Condens. Matter Mater. Phys., 2005, 72, 104436.
    • 31 G. S. Parkinson, T. A. Manz, Z. Novotn´y, P. T. Sprunger, R. L. Kurtz, M. Schmid, D. S. Sholl and U. Diebold, Phys. Rev. B: Condens. Matter Mater. Phys., 2012, 85, 195450.
    • 32 R. Jansen, V. A. M. Brabers and H. van Kempen, Surf. Sci., 1995, 328, 237-247.
    • 33 R. Jansen, H. van Kempen and R. M. Wolf, J. Vac. Sci. Technol., B, 1996, 14, 1173.
    • 34 G. Maris, O. Shklyarevskii, L. Jdira, J. G. H. Hermsen and S. Speller, Surf. Sci., 2006, 600, 5084-5091.
    • 35 G. Maris, L. Jdira, J. G. H. Hermsen, S. Murphy, G. Manai, I. V. Shvets and S. Speller, Jpn. J. Appl. Phys., 2006, 45, 2225-2229.
    • 36 G. Maris, L. Jdira, J. G. H. Hermsen, S. Murphy, G. Manai, I. V. Shvets and S. Speller, IEEE Trans. Magn., 2006, 42, 2927-2929.
    • 37 A. R. Lennie, N. G. Condon, F. M. Leibsle, P. W. Murray, G. Thornton and D. J. Vaughan, Phys. Rev. B: Condens. Matter Mater. Phys., 1996, 53, 10244-10253.
    • 38 M. Ritter and W. Weiss, Surf. Sci., 1999, 432, 81-94.
    • 39 N. Berdunov, S. Murphy, G. Mariotto and I. V. Shvets, Phys. Rev. B: Condens. Matter Mater. Phys., 2004, 70, 085404.
    • 40 G. J. Martin, R. S. Cutting, D. J. Vaughan and M. C. Warren, Am. Mineral., 2009, 94, 1341-1350.
    • 41 N. Berdunov, S. Murphy, G. Mariotto and I. V. Shvets, Phys. Rev. Lett., 2004, 93, 057201.
    • 42 A. Kiejna, T. Ossowski and T. Pabisiak, Phys. Rev. B: Condens. Matter Mater. Phys., 2012, 85, 125414.
    • 43 N. G. Condon, F. M. Leibsle, T. Parker, A. R. Lennie, D. J. Vaughan and G. Thornton, Phys. Rev. B: Condens. Matter Mater. Phys., 1997, 55, 15885-15894.
    • 44 P. W. Tasker, J. Phys. C: Solid State Phys., 1979, 12, 4977-4984.
    • 45 I. Kostov, Mineralogy, Oliver Boyd, Edinburgh, London, 1968.
    • 46 R. V. Gaines, H. C. W. Skinner, E. E. Foord, B. Mason and A. Rosenzweig, Dana's New Mineralogy: The System of Mineralogy of James Dwight and Edward Salisbury, WileyBlackwell, 1997.
    • 47 G. Kresse and J. Hafner, Phys. Rev. B: Condens. Matter Mater. Phys., 1993, 47, 558-561.
    • 48 G. Kresse and J. Hafner, Phys. Rev. B: Condens. Matter Mater. Phys., 1994, 49, 14251-14269.
    • 49 G. Kresse and J. Furthmu¨ller, Comput. Mater. Sci., 1996, 6, 15-50.
    • 50 G. Kresse and J. Furthmu¨ller, Phys. Rev. B: Condens. Matter Mater. Phys., 1996, 54, 11169-11186.
    • 51 J. P. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett., 1997, 78, 1396.
    • 52 J. P. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett., 1996, 77, 3865-3868.
    • 53 S. Grimme, J. Comput. Chem., 2006, 27, 1787-1799.
    • 54 G. Kresse and D. Joubert, Phys. Rev. B: Condens. Matter Mater. Phys., 1999, 59, 1758-1775.
    • 55 P. E. Blo¨chl, Phys. Rev. B: Condens. Matter Mater. Phys., 1994, 50, 17953-17979.
    • 56 L. N´eel, Ann. Phys., 1948, 3, 137-198.
    • 57 C. G. Shull, E. O. Wollan and W. C. Koehler, Phys. Rev., 1951, 84, 912-921.
    • 58 S. L. Dudarev, G. A. Botton, S. Y. Savrasov, C. J. Humphreys and A. P. Sutton, Phys. Rev. B: Condens. Matter Mater. Phys., 1998, 57, 1505-1509.
    • 59 V. I. Anisimov, M. A. Korotin, J. Zaanen and O. K. Andersen, Phys. Rev. Lett., 1992, 68, 345-348.
    • 60 I. de P. R. Moreira, F. Illas and R. L. Martin, Phys. Rev. B: Condens. Matter Mater. Phys., 2002, 65, 155102.
    • 61 C. Loschen, J. Carrasco, K. M. Neyman and F. Illas, Phys. Rev. B: Condens. Matter Mater. Phys., 2007, 75, 035115.
    • 62 L. Wang, T. Maxisch and G. Ceder, Phys. Rev. B: Condens. Matter Mater. Phys., 2006, 73, 195107.
    • 63 R. Grau-Crespo, F. Cor`a, A. A. Sokol, N. H. de Leeuw and C. R. A. Catlow, Phys. Rev. B: Condens. Matter Mater. Phys., 2006, 73, 035116.
    • 64 D. Mun˜oz, N. M. Harrison and F. Illas, Phys. Rev. B: Condens. Matter Mater. Phys., 2004, 69, 085115.
    • 65 I. Ciofini, F. Illas and C. Adamo, J. Chem. Phys., 2004, 120, 3811-3816.
    • 66 F. Illas and R. L. Martin, J. Chem. Phys., 1998, 108, 2519-2527.
    • 67 F. Cor`a, Mol. Phys., 2005, 103, 2483-2496.
    • 68 A. Baldereschi, Phys. Rev. B: Condens. Matter Mater. Phys., 1973, 7, 5212-5215.
    • 69 D. J. Chadi and M. L. Cohen, Phys. Rev. B: Condens. Matter Mater. Phys., 1973, 8, 5747-5753.
    • 70 H. J. Monkhorst and J. D. Pack, Phys. Rev. B: Condens. Matter Mater. Phys., 1976, 13, 5188-5192.
    • 71 Z. Ka¸kol and J. M. Honig, Phys. Rev. B: Condens. Matter Mater. Phys., 1989, 40, 9090-9097.
    • 72 M. D. Pashley, Phys. Rev. B: Condens. Matter Mater. Phys., 1989, 40, 10481-10487.
    • 73 G. W. Watson, E. T. Kelsey, N. H. de Leeuw, D. J. Harris and S. C. Parker, J. Chem. Soc., Faraday Trans., 1996, 92, 433-438.
    • 74 G. Makov and M. C. Payne, Phys. Rev. B: Condens. Matter Mater. Phys., 1995, 51, 4014-4022.
    • 75 J. Neugebauer and M. Scheffler, Phys. Rev. B: Condens. Matter Mater. Phys., 1992, 46, 16067-16080.
    • 76 R. F. W. Bader, Atoms in Molecules: A Quantum Theory, Oxford University Press, Oxford (UK), 1990.
    • 77 G. Henkelman, A. Arnaldsson and H. J´onsson, Comput. Mater. Sci., 2006, 36, 354-360.
    • 78 E. Sanville, S. D. Kenny, R. Smith and G. Henkelman, J. Comput. Chem., 2007, 28, 899-908.
    • 79 W. Tang, E. Sanville and G. Henkelman, J. Phys.: Condens. Matter, 2009, 21, 084204.
    • 80 K. B. Wiberg and P. R. Rablen, J. Comput. Chem., 1993, 14, 1504-1518.
    • 81 J. G. A´ngy´an, G. Jansen, M. Loss, C. H¨attig and B. A. Heß, Chem. Phys. Lett., 1994, 219, 267-273.
    • 82 F. De Proft, C. Van Alsenoy, A. Peeters, W. Langenaeker and P. Geerlings, J. Comput. Chem., 2002, 23, 1198-1209.
    • 83 G. Wulff, Z. Kristallogr. Mineral., 1901, 34, 449-530.
    • 84 J. W. Gibbs, Collected Works, Longman, New York, 1928.
    • 85 T. G. Cooper and N. H. de Leeuw, J. Cryst. Growth, 2006, 294, 137-149.
    • 86 N. H. de Leeuw and T. G. Cooper, Geochim. Cosmochim. Acta, 2007, 71, 1655-1673.
    • 87 X.-G. Wang, W. Weiss, S. K. Shaikhutdinov, M. Ritter, M. Petersen, F. Wagner, R. Schlo¨gl and M. Scheffler, Phys. Rev. Lett., 1998, 81, 1038-1041.
    • 88 M. W. J. Chase, NIST JANAF Termochemical Tables, American Chemical Society and American Institute of Physics for the National Institute of Standards and Technology, Washington DC, 1998.
    • 89 R. Grau-Crespo, C. R. A. Catlow and N. H. de Leeuw, J. Catal., 2007, 248, 77-88.
    • 90 K. Reuter and M. Scheffler, Phys. Rev. B: Condens. Matter Mater. Phys., 2001, 65, 035406.
    • 91 R. Grau-Crespo, I. de P. R. Moreira, F. Illas, N. H. de Leeuw and C. R. A. Catlow, J. Mater. Chem., 2006, 16, 1943-1949.
    • 92 T. A. Mellan and R. Grau-Crespo, J. Chem. Phys., 2012, 137, 154706.
    • 93 W. M. Haynes, in CRC Handbook of Chemistry and Physics, ed. W. M. Haynes, CRC; London: Taylor & Francis [distributor], Boca Raton, Fla., 93rd edn, 2012.
    • 94 J. Tersoff and D. R. Hamann, Phys. Rev. B: Condens. Matter Mater. Phys., 1985, 31, 805-813.
    • 95 D. E. P. Vanpoucke and G. Brocks, Phys. Rev. B: Condens. Matter Mater. Phys., 2008, 77, 241308.
    • 96 S. Irrera, A. Roldan, G. Portalone and N. H. de Leeuw, J. Phys. Chem. C, 2013, 117, 3949-3957.
    • 97 E. A. Wood, J. Appl. Phys., 1964, 35, 1306-1312.
    • 98 J. R. Rustad, E. Wasserman and A. R. Felmy, Surf. Sci., 1999, 432, L583-L588.
    • 99 N. Spiridis, J. Barbasz, Z. Łodziana and J. Korecki, Phys. Rev. B: Condens. Matter Mater. Phys., 2006, 74, 155423.
    • 100 S. Nie, E. Starodub, M. Monti, D. A. Siegel, L. Vergara, F. El Gabaly, N. C. Bartelt, J. de la Figuera and K. F. McCarty, J. Am. Chem. Soc., 2013, 135, 10091-10098.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article