LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Publisher: Elsevier
Languages: English
Types: Article
Subjects:

Classified by OpenAIRE into

mesheuropmc: sense organs
The thermal ageing of an Ethylene-vinyl Acetate (EVA) polymer used as an adhesive and encapsulant in a photovoltaic module has been investigated. The EVA is used to bond the silicon solar cells to the front glass and backing sheet and to protect the photovoltaic materials from the environment and mechanical damage. Using a range of experimental techniques, including Dynamic Mechanical Analysis, Differential Scanning Calorimetry and Thermo-Gravimetric analysis, it was possible to show a link between changes in mechanical properties with both the transient temperature and the degree of long-time thermal ageing. Importantly, it was possible to show that the ageing related property changes were likely due to long term structural changes rather than any modification of the chemistry of the material.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • [1] Department of Energy & Climate Change. UK renewable energy roadmap: 2013 update. London; 2013.
    • [2] Department of Energy & Climate Change. The Rt Hon Gregory Barker UK Solar PV Strategy Part 1: Roadmap to a Brighter Future. London; 2013.
    • [3] Forbes I, Pearsall N, Georgitsioti T. Simplified levelised cost of the domestic photovoltaic energy in the UK: the importance of the feed-in tariff scheme. IET Renew Power Gener 2014;8:451-8. http://dx.doi.org/10.1049/iet-rpg.2013.0241.
    • [4] Jellinek HHG. Developments in polymer stabilization-2, In: Gerald Scott, editor. Applied Science Publishers, London; 1980. J Polym Sci Polym Lett Ed, vol. 19; 1981. p. 419-20. doi:http://dx.doi.org/10.1002/pol.1981.130190809.
    • [5] Guillet J. Photochemistry of man-made polymers, McKellar John F, Norman S. Allen, Applied Science Publishers, London; 1979. J Polym Sci Polym Lett Ed, vol. 18; 1980. p. 155. doi:http://dx.doi.org/10.1002/pol.1980.130180227.
    • [6] Emanuel NM, Buchachenko AL. Chemical physics of polymer degradation and stabilization. Utrecht: VNU Science Press BV; 1987 First.
    • [7] Andrei CH, Hogea I, Dobrescu VI. Photodegradation and photostabilization of the ethylene-vinyl acetate copolymers. II New facts which support the scheme of photodegradation mechanism. Rev Roum Chim 1988;33:53-8.
    • [8] Czanderna AW, Pern FJ. Encapsulation of PV modules using ethylene vinyl acetate copolymer as a pottant: a critical review. Sol Energy Mater Sol Cells 1996;43:101-81. http://dx.doi.org/10.1016/0927-0248(95)00150-6.
    • [9] Pern FJ. Ethylene-Vinyl Acetate (EVA) encapsulants for photovoltaic modules: degradation and discoloration mechanisms and formulation modifications for improved piiotostability. Angew Makromol Chem 1997;252:192-216.
    • [10] Schissel WFC, P. Polymers in solar Energy: applications and opportunities. Polym Sol energy Util ASC Symp Ser 1983;220.
    • [11] Burger DR, Cuddihy EF. Vacuum Lamination of Photovoltaic Modules. Pasadena, California: JPL Publication; 1983. p. 407-19. http://dx.doi.org/10.1021/ bk-1983-0220.ch025.
    • [12] El Amrani A, Mahrane A, Moussa FY, Boukennous Y. Solar module fabrication. Int J Photoenergy 2007;2007:1-5. http://dx.doi.org/10.1155/2007/27610.
    • [13] Liu X, Wildman RD, Ashcroft IA, Elmahdy AE, Ruiz PD. Modelling the mechanical response of urushi lacquer subject to a change in relative humidity. Proc R Soc A Math Phys Eng Sci 2012;468:3533-51. http://dx.doi. org/10.1098/rspa.2012.0008.
    • [14] Liu X, Wildman RD, Ashcroft IA. Experimental investigation and numerical modelling of the effect of the environment on the mechanical properties of polyurethane lacquer films. J Mater Sci 2012;47:5222-31. http://dx.doi.org/ 10.1007/s10853-012-6406-2.
    • [15] Elmahdy aE, Ruiz PD, Wildman RD, Huntley JM, Rivers S. Stress measurement in East Asian lacquer thin films owing to changes in relative humidity using phase-shifting interferometry. Proc R Soc A Math Phys Eng Sci 2010;467:1329- 47. http://dx.doi.org/10.1098/rspa.2010.0414.
    • [16] Ashcroft IA, Altaf K, Saleh N, Hague R. Environmental aging of epoxy based stereolithography part 2 - effect of absorbed moisture on mechanical properties. Plast Rubber Compos 2012;41:129-36. http://dx.doi.org/10.1179/ 1743289811Y.0000000023.
    • [17] Ashcroft I, Wahab MMA, Crocombe A, Hughes D, Shaw S. The effect of environment on the fatigue of bonded composite joints. Part 1: testing and fractography. Compos Part A Appl Sci Manuf 2001;32:45-58. http://dx.doi.org/ 10.1016/S1359-835X(00)00131-7.
    • [18] Wu D, Zhu J, Betts T, Gottschalg R. PV module degradation mechanisms under different environmental stress factors. 8th Photovolt. Sci. Appl. Technol. Conf., Newcastle upon Tyne: The Solar Energy Society; 2012, p. 177-80.
    • [19] Wu D, Zhu J, Betts TG. The effects of lamination conditions on the properties of encapsulation materials of photovoltaic modules. 10 PV-SAT, Loughborough; 2014.
    • [20] J. Zhu, T.R. Betts RG. Effects of lamination condition on durability of PV module packaging and performance. 10 PV-SAT, Loughborough; 2014.
    • [21] Wu D, Zhu J, Betts TR, Gottschalg R. Degradation of interfacial adhesion strength within photovoltaic mini-modules during damp-heat exposure. Prog Photovoltaics Res Appl 2014;22:796-809. http://dx.doi.org/10.1002/pip.2460.
    • [22] Rashtchi S, Ruiz PD, Wildman R, Ashcroft I. Measurement of moisture content in photovoltaic panel encapsulants using spectroscopic optical coherence tomography: a feasibility study; 2012. p. 84720O. doi:http://dx.doi.org/ 10.1117/12.928959.
    • [23] Iwamoto R, Matsuda T. Interaction of water in polymers: poly(ethylene-covinyl acetate) and poly(vinyl acetate). J Polym Sci B: Polym Phys 2005;43:777- 85. http://dx.doi.org/10.1002/polb.20368.
    • [24] Badiee A, Wildman R, Ashcroft I. Effect of UV aging on degradation of ethylene-vinyl acetate (EVA) as encapsulant in photovoltaic (PV) modules. vol. 9179; 2014. p. 91790O. doi:http://dx.doi.org/10.1117/12.2062007.
    • [25] Çopuroğlu M, Şen M. A comparative study of thermal ageing characteristics of poly(ethylene-co-vinyl acetate) and poly(ethylene-co-vinyl acetate)/carbon black mixture. Polym Adv Technol 2004;15:393-9. http://dx.doi.org/10.1002/ pat.485.
    • [26] Hrdina KE, Halloran JW, Oliveira MK. A. Chemistry of removal of ethylene vinyl acetate binders. J Mater Sci 1998;33:2795-803. http://dx.doi.org/10.1023/ A:1017525501161.
    • [27] Kempe MD, Jorgensen GJ, Terwilliger KM, Mcmahon TJ, Kennedy CE. Ethylenevinyl acetate potential problems for photovoltaic packaging. In: IEEE 4th World Conferenece on Photovoltaic Energy Conversion. Waikoloa, Hawaii; 2006.
    • [28] Buch X, Shanahan MER. Thermal and thermo-oxidative ageing of an epoxy adhesive. Polym Degrad Stab 2000;68:403-11. http://dx.doi.org/10.1016/ S0141-3910(00)00028-8.
    • [29] Buch X, Shanahan MER. Influence of the gaseous environment on the thermal degradation of a structural epoxy adhesive. J Appl Polym Sci 2000;76:987-92. http://dx.doi.org/10.1002/(SICI)1097-4628(20000516)76:7o 987:: AID-APP1 43.0.CO;2-1.
    • [30] Heng-Yu Li, Laura-Emmanuelle Perret-Aebi, Ricardo Theron, Christophe Ballif, Yun Luo RF. Towards in-line determination of EVA Gel Content during PV modules Lamination Processes. In: Proceedings of the 25th PVSC Conference; 2010.
    • [31] Cai XE, Shen H. Apparent activation energies of the non-isothermal degradation of EVA copolymer. Therm Anal Calorim 1999;55:67-76. http://dx.doi.org/ 10.1023/A:1010175904064.
    • [32] Bianchi O, Martins JDN, Fiorio R, Oliveira RVB, Canto LB. Changes in activation energy and kinetic mechanism during EVA crosslinking. Polym Test 2011;30:616-24. http://dx.doi.org/10.1016/j.polymertesting.2011.05.001.
    • [33] Starink M. The determination of activation energy from linear heating rate experiments: a comparison of the accuracy of isoconversion methods. Thermochim Acta 2003;404:163-76. http://dx.doi.org/10.1016/S0040-6031(03) 00144-8.
    • [34] Li HY, Perret-Aebi LE, Theron R, Ballif C, Luo Y, Lange RF. Optical transmission as a fast and non-destructive tool for the determination of ethylene-co-vinyl acetate curing state in photovoltaic modules. Prog Photovoltaics Res Appl 2013;21:187-94.
    • [35] Motta C. The effect of copolymerization on transition temperatures of polymeric materials. J Therm Anal 1997;49:461-4. http://dx.doi.org/10.1007/ BF01987471.
    • [36] Brandrup EHI J. Polymer Handbook. 4th ed. New York: Wiley-Interscience; 1999.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article