LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Languages: English
Types: Article
Subjects: sub-02

Classified by OpenAIRE into

arxiv: Physics::Geophysics
We present a new upper mantle seismic model for southern Africa based on the fitting of a large (3622 waveforms) multi-mode surface wave data set with propagation paths significantly shorter (≤ 6000 km) than those in globally-derived surface wave models. The seismic lithosphere beneath the cratonic region of southern Africa in this model is about 175 ± 25 km thick, consistent with other recent surface wave models, but significantly thinner than indicated by teleseismic body-wave tomography. We determine the in situ geotherm from kimberlite nodules from beneath the same region and find the thermal lithosphere model that best fits the nodule data has a mechanical boundary layer thickness of 186 km and a thermal lithosphere thickness of 204 km, in very good agreement with the seismic measurement. The shear wave velocity determined from analyzes of the kimberlite nodule compositions agree with the seismic shear wave velocity to a depth of not, vert, similar150 km. However, the shear wave velocity decrease at the base of the lid seen in the seismic model does not correspond to a change in mineralogy. Recent experimental studies of the shear wave velocity in olivine as a function of temperature and period of oscillation demonstrate that this wave speed decrease can result from grain boundary relaxation at high temperatures at the period of seismic waves. This decrease in velocity occurs where the mantle temperature is close to the melting temperature (within not, vert, similar100 °C).
  • No references.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article