Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Publisher: Elsevier Science Inc.
Languages: English
Types: Article
Subjects: TA
This paper presents a three-phase gait recognition method that analyses the spatio-temporal shape and dynamic motion (STS-DM) characteristics of a human subject’s silhouettes to identify the subject in the presence of most of the challenging factors that affect existing gait recognition systems. In phase 1, phase-weighted magnitude spectra of the Fourier descriptor of the silhouette contours at ten phases of a gait period are used to analyse the spatio-temporal changes of the subject’s shape. A component-based Fourier descriptor based on anatomical studies of human body is used to achieve robustness against shape variations caused by all common types of small carrying conditions with folded hands, at the subject’s back and in upright position. In phase 2, a full-body shape and motion analysis is performed by fitting ellipses to contour segments of ten phases of a gait period and using a histogram matching with Bhattacharyya distance of parameters of the ellipses as dissimilarity scores. In phase 3, dynamic time warping is used to analyse the angular rotation pattern of the subject’s leading knee with a consideration of arm-swing over a gait period to achieve identification that is invariant to walking speed, limited clothing variations, hair style changes and shadows under feet. The match scores generated in the three phases are fused using weight-based score-level fusion for robust identification in the presence of missing and distorted frames, and occlusion in the scene. Experimental analyses on various publicly available data sets show that STS-DM outperforms several state-of-the-art gait recognition methods.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • [1] W. Hu, T. Tan, L. Wang, S. Maybank, A survey on visual surveillance of object motion and behaviours, IEEE Trans. Syst., Man, Cybern. C, Appl. Rev., 34 (3) (2004) 334-352.
    • [2] M. S. Nixon, J. N. Carter, Automatic Recognition by Gait, in: Proc. IEEE, vol. 94, no. 11, 2006, pp. 2013-2024.
    • [3] M. S. Nixon, T. N. Tan, R. Chellappa, Human identification based on gait, Springer Science+Business Media, New York, USA, 2006.
    • [39] D. S. Matovski, M. S. Nixon, S. Mahmoodi, J. N. Carter, The effect of time on gait recognition performance, IEEE Trans. Inf. Forensics Security, 7 (2) (2012) 543-552.
    • [40] M. A. Hossain, Y. Makihara, J. Wang, Y. Yagi, Clothing-invariant gait identification using part-based clothing categorization and adaptive weight control, Pattern Recognit., 43 (2010) 2281-2291.
    • [41] C. Wang, J. Zhang, L. Wang, J. Pu, X. Yuan, Human identification using temporal information preserving gait template, IEEE Trans. Pattern Anal. Mach. Intell., 34 (11) (2012) 2164-2176.
    • [42] K. Bashir, T. Xiang, S. Gong, Gait recognition without subject cooperation, Pattern Recognit. Lett., 31 (2010) 2052-2060.
    • [43] J. Zhang, J. Pu, C. Chen, R. Fleischer, Low-resolution gait recognition, IEEE Trans. Syst., Man, Cybern. B, Cybern., 40 (4) (2010) 986-996.
    • [44] H. Lu, K. N. Plataniotis, A. N. Venetsanopoulos, MPCA: Multilinear principal component analysis of tensor objects, IEEE Trans. Neural Netw., 19 (1) (2008) 18-39.
    • [45] Z. Liu, S. Sarkar, Effect of silhouette quality on hard problems in gait recognition, IEEE Trans. Syst., Man, Cybern. B, Cybern., 35 (2) (2005) 170-183.
    • [46] G. Bradski, A. Kaehler, Learning OpenCV Computer Vision with the OpenCV Library, O'Reilly Media, Sebastopol, 2008.
    • [47] D.A. Winter, Biomechanics and motor control of human movement, 3rd ed., John Wiley & Sons, New Jersey, 2004.
    • [48] P. Yap, R. Paramesran, S. Ong, Image Analysis by Krawtchouk Moments, IEEE Trans. Image Process., 12 (11) (2003) 1367-1377.
    • [49] D. Cunado, M. S. Nixon, J. N. Carter, Automatic extraction and description of human gait models for recognition purposes, Comput. Vis. Image Und., 90 (1) (2003) 1-41.
    • [50] S. Yu, D. Tan, T. Tan, A framework for evaluating the effect of view angle, clothing and carrying condition on gait recognition, in: Proc. Int. Conf. Pattern Recog., Hong Kong, China, 2006, pp. 441- 444.
    • [51] C. Wang, J. Zhang, J. Pu, X. Yuan, L. Wang, Chrono-Gait Image: A novel temporal template for gait recognition, in: Proc. Eur. Conf. Comput. Vis., Part 1, LNCS 6311, Heraklion, Greece, 2010, pp. 257-270.
    • [52] M. S. Nixon, A. S. Aguado, Feature extraction and image processing, 2nd ed., Elsevier, London, 2006.
    • [53] D. Maltoni, D. Maio, A. K. Jain, S. Prabhakar, Handbook of fingerprint recognition, 2nd ed., Springer Science+Business Media, 2009.
    • [54] R. Gross, J. Shi, The CMU Motion of Body (MoBo) Database, Tech. report CMU-RI-TR-01-18, Robotics Institute, CMU, 2001.
    • [55] R. Collins, R. Gross, J. Shi, Silhouette-based human identification from body shape and gait, in: Proc. IEEE Int. Conf. Autom. Face Gesture Recog., 2002, pp. 351-356.
    • [56] Y. Makihara, H. Mannami, A. Tsuji, M. A. Hossain, K. Sugiura, A. Mori, Y. Yagi, The OU-ISIR gait database comprising the treadmill data set, IPSJ Trans. Comput. Vis. Appl., Tech. note, vol. 4, pp. 53-62, 2012.
    • [57] D. Tolliver, R. T. Collins, Gait shape estimation for identification, in: Proc. Int. Conf. Audio- and Video-Based Biometric Person Authentication (AVBPA), Guildford, U.K., 2003, pp. 734-742.
    • [58] J. Phillips, H. Moon, S. Rizvi, P. Rause, The FERET evaluation methodology for face recognition algorithms, IEEE Trans. Pattern Anal. Mach. Intell., 22 (10) (2000) 1090-1104.
    • [59] O. Barnich, M. V. Droogenbroeck, Frontal-view gait recognition by intra- and inter-frame rectangle size distribution, Pattern Recognit. Lett., 30 (9) (2009) 893-901.
    • [60] J. W. Cooley, O. W. Tukey, An algorithm for the machine calculation of complex Fourier series, Math. Comput., 19 (90) (1965) 297-301.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article