LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Bawden, D. (2015)
Publisher: MDPI AG
Journal: Informatics (Basel)
Languages: English
Types: Article
Subjects: chemistry, Z665, concepts, chemoinformatics, periodicity, chemical structure, information systems, abstract objects, T58.5-58.64, Information technology
The purpose of the paper is to examine the nature of chemical concepts, and the ways in which they are applied in chemoinformatics systems. An account of concepts in philosophy and in the information sciences leads to an analysis of chemical concepts, and their representation. The way in which concepts are applied in systems for information retrieval and for structure–property correlation are reviewed, and some issues noted. Attention is focused on the basic concepts or substance, reaction and property, on the organising concepts of chemical structure, structural similarity, periodicity, and on more specific concepts, including two- and three-dimensional structural patterns, reaction types, and property concepts. It is concluded that chemical concepts, despite (or perhaps because of) their vague and mutable nature, have considerable and continuing value in chemoinformatics, and that an increased formal treatment of concepts may have value in the future.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Weitz, M. Theories of Concepts: A History of the Major Philosophical Tradition; Routledge: London, UK, 1988.
    • Margolis, E.; Laurence, S. Concepts. In The Stanford Encyclopedia of Philosophy, Spring 2014 ed.; Zalta, E.N., Ed.; Available online: http://plato.stanford.edu/archives/spr2014/entries/concepts (accessed on 17 September 2015).
    • Hjørland, B. Concept theory. J. Am. Soc. Inf. Sci. Technol. 2009, 60, 1519-1536.
    • Margolis, E.; Laurence, S. The ontology of concepts-abstract objects or mental representations? Noûs 2007, 41, 561-593.
    • Van Loocke, P. The Nature of Concepts: Evolution, Structure and Representation; Routledge: London, UK, 1999.
    • Peacocke, C. A Study of Concepts; MIT Press: Cambridge, MA, USA, 1992.
    • 7. Zalta, E. Fregean senses, modes of presentation, and concepts. Philos. Perspect. 2001, 15, 335-359.
    • 8. Hale, B. Abstract Objects; Blackwell: Oxford, UK, 1987.
    • 9. Ney, A. Metaphysics: An Introduction; Routledge: Abingdon, UK, 2014.
    • 10. Parsons, C. Mathematical Thought and Its Objects; Cambridge University Press: Cambridge, UK, 2008.
    • 11. Zhang, Y.; Salaba, A. Implementing FRBR in Libraries; Neal-Schuman: New York, NY, USA, 2009.
    • 12. Maxwell, R.L. Maxwell's Handbook for RDA; Facet: London, UK, 2014.
    • 13. Broughton, V. Essential Classification, 2nd ed.; Facet: London, UK, 2015.
    • 14. Foskett, A.C. The Subject Approach to Information, 5th ed.; Facet: London, UK, 1996.
    • 15. Lancaster, F.W. Indexing and Abstracting in Theory and Practice, 3rd ed.; Facet: London, UK, 2003.
    • 16. Marradi, A. The concept of concept: Concepts and terms. Knowl. Org. 2012, 39, 29-54.
    • 17. Szostak, R. Complex concepts into basic concepts. J. Am. Soc. Inf. Sci. Technol. 2011, 62, 2247-2265.
    • 18. Friedman, A.; Thellefsen, M. Concept theory and semiotics in knowledge organization. J. Doc. 2011, 67, 644-674.
    • 19. Smiraglia, R.P.; van den Heuvel, C. Classifications and concepts: Towards an elementary theory of knowledge interaction. J. Doc. 2013, 69, 360-383.
    • 20. Knight, D. Ideas in Chemistry: A History of the Science; Athlone Press: London, UK, 1992.
    • 21. Rouvray, D.H. Concepts in Chemistry: A Contemporary Challenge; Research Studies Press: Taunton, UK, 1997.
    • 22. Taber, K. Chemical Misconceptions: Prevention, Diagnosis and Cure-Theoretical Background; Royal Society of Chemistry: Cambridge, UK, 2002; Volume 1.
    • 23. Atkins, P. Chemistry: A Very Short Introduction; Oxford University Press: Oxford, UK, 2015.
    • 24. Rice, J.E. Organic Chemistry Concepts and Applications for Medicinal Chemistry; Academic Press: San Diego, CA, USA, 2014.
    • 25. Chalmers, A. What is This Thing Called Science? 4th ed.; Open University Press: Buckingham, UK, 2013.
    • 26. Needham. P. Chemical substances and intensive properties. Ann. N. Y. Acad. Sci. 2003, 988, 99-113.
    • 27. Rouvray, D.H. Are the concepts of chemistry all fuzzy? In Concepts in Chemistry: A Contemporary Challenge; Research Studies Press: Taunton, UK, 1997; pp. 1-15.
    • 28. Scerri, E.R. The Periodic Table: Its Story and Significance; Oxford University Press: Oxford, UK, 2007.
    • 29. Marchese, F.T. Periodicity, visualization and design. Found. Chem. 2013, 15, 31-55.
    • 30. Babaev, E.V.; Hefferlin, R. The concepts of periodicity and hyperperiodicity: From atoms to molecules. In Concepts in Chemistry: A Contemporary Challenge; Rouvray, D.H., Ed.; Research Studies Press: Taunton, UK, 1997; pp. 41-100.
    • 31. Hjørland, B. The periodic table and the philosophy of classification. Knowl. Org. 2011, 38, 9-21 32. Scerri, E. Trouble in the periodic table. Educ. Chem. 2012, 13-17. Available online: http://www.rsc.org/images/Scerri%20Trouble%20PT_EiC_January2012_tcm18-212413.pdf (accessed on 19 November 2015).
    • 33. Villaveces, J.L.; Daza, E.E. The concept of chemical structure. In Concepts in Chemistry: A Contemporary Challenge; Rouvray, D.H., Ed.; Research Studies Press: Taunton, UK, 1997; pp. 101-132.
    • 34. Goodwin, W. How do structural formulas embody the theory of organic chemistry? Br. J. Philos. Sci. 2010, 61, 621-633.
    • 35. Lewis, G.N. Valence and the Structure of Atoms and Molecules; The Chemical Catalog Company: New York, NY, USA, 1923.
    • 36. Crum Brown, A. On chemical constitution and its relation to physical and physiological properties. Philos. Mag. 1869, 37, 395-400.
    • 37. Chemical Society. Aromaticity: An International Symposium, full proceedings; Chemical Society: London, UK, 1967.
    • 38. Badger, G.M. Aromatic Character and Aromaticity; Cambridge University Press: Cambridge, UK, 1969.
    • 39. Randic, M. Aromaticity and conjugation. J. Am. Chem. Soc. 1977, 99, 444-450.
    • 40. Garratt, P.J. Aromaticity. Wiley: New York, NY, UK, 1986.
    • 41. King, R.B. Aromaticity from planar organic molecules to polyhedral inorganic species. In Concepts in Chemistry: A Contemporary Challenge; Rouvray, D.H., Ed.; Research Studies Press: Taunton, UK, 1997; pp. 152-203.
    • 42. Krygowski, T.M.; Cyranski, M.K. Aromaticity in Heterocyclic Compounds; Springer: Berlin, Germany, 2009.
    • 43. Olis, W.D. Introduction. In Aromaticity: An International Symposium; Chemical Society: London, UK, 1967; pp. 1-3.
    • 44. Sayle, R.A. So you think you understand tautomerism? J. Comput. Aided Mol. Des. 2010, 24, 485-496.
    • 45. Gilat, G. The concept of structural chirality. In Concepts in Chemistry: A Contemporary Challenge; Rouvray, D.H., Ed.; Research Studies Press: Taunton, UK, 1997; pp. 325-351.
    • 46. Bawden, D. Classification of chemical reactions: Potential, possibilities and continuing relevance. J. Chem. Inf. Comput. Sci. 1991, 31, 212-216.
    • 47. Kraut, J.; Eiblmaier, J.; Grethe, G.; Löw, P.; Matuszczyk, H.; Saller, H. Algorithm for reaction classification. J. Chem. Inf. Model. 2013, 53, 2884-2895.
    • 48. Warr, W.A. A short review of chemical reaction database systems, computer-aided synthesis design, reaction prediction and synthetic feasibility. Mol. Inform. 2014, 33, 469-476.
    • 49. Güner, O.F.; Bowen, J.P. Setting the record straight: The origin of the pharmacophore concept. J. Chem. Inf. Model. 2014, 54, 1269-1283.
    • 50. Cook, A.; Johnson, P.A.; Law, J.; Mirzazadeh, M.; Ravitz, O.; Simon, A. Computer-aided synthesis design: 40 years on. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2012, 2, 79-107.
    • 51. Bøgevig, A.; Federsel, H.-J.; Huerta, F.; Hutchings, M.G.; Kraut, H.; Langer, T.; Löw, P.; Oppawsky, C.; Rein, T.; Saller, H. Route design in the 21st century: The ICSYNTH software tool as an idea generator for synthesis prediction. Org. Process Dev. 2015, 19, 357-368.
    • 52. Goodwin, W. Scientific understanding and synthetic design. Br. J. Philos. Sci. 2009, 60, 271-301.
    • 53. Mitchell, M. Complexity: A Guided Tour; Oxford University Press: New York, NY, USA, 2009.
    • Sci. Technol. 2015, 66, 2177-2186.
    • Bonchev, D.; Seitz, W.A. The concept of complexity in chemistry. In Concepts in Chemistry: A Contemporary Challenge; Rouvray, D.H., Ed.; Research Studies Press: Taunton, UK, 1997; pp. 353-381.
    • Vincent, A. Molecular Symmetry and Group Theory, 2nd ed.; Wiley: Chichester, UK, 2013.
    • Rouvray, D.H. The changing role of the symbol in the evolution of chemical notation. Endeavour 1977, 1, 23-31.
    • Lewis, G.N. The atom and the molecule. J. Am. Chem. Soc. 1916, 38, 762-785.
    • Crum Brown, A. On the theory of isomeric compounds. Trans. R. Soc. Edinb. 1864, 23, 707-719.
    • Ritter, C. An early history of Alexander Crum Brown's graphical formulas. In Tools and Modes of Representation in the Laboratory Sciences; Klein, U., Ed.; Kluwer: Dordrecht, The Netherlands, 2001; pp. 35-46.
    • Goodwin, W. Explanation in organic chemistry. Ann. N. Y. Acad. Sci. 2003, 988, 141-153.
    • Goodwin, W. Sustaining a controversy: The non-classical ion debate. Br. J. Philos. Sci. 2013, 64, 787-816.
    • Meadows, J. The Victorian Scientist: The Growth of a Profession; The British Library: London, UK, 2004.
    • Willett, P. From chemical documentation to chemoinformatics: 50 years of chemical information science. J. Inf. Sci. 2008, 34, 477-500.
    • Lynch, M.F.; Harrison, J.M.; Town, W.G; Ash, J.E. Computer Handling of Chemical Structure Information; MacDonald: London, UK, 1971.
    • Bottle, R.T. The Use of Chemical Literature, 2nd ed. revised; Butterworths: London, UK, 1971.
    • Ash, J.E.; Hyde, E. Chemical Information Systems; Ellis Horwood: Chichester, UK, 1975.
    • Ash, J.; Chubb, P.; Ward, S.; Welford, S.; Willett, P. Communication, Storage and Retrieval of Chemical Information; Ellis Horwood: Chichester, UK, 1985.
    • Ash, J.E.; Warr, W.A.; Willett, P. Chemical Structure Systems; Ellis Horwood: Chichester, UK, 1991.
    • Leach, A.R.; Gillet, V.J. An Introduction to Chemoinformatics, 2nd ed.; Springer: Dordrecht, UK, 2007.
    • Currano, J.N.; Roth, D.L. Chemical Information for Chemists: A Primer; RSC Publishing: Cambridge, UK, 2014.
    • Buntrock, R.E. Beilstein and Gmelin: Classical chemical information for people who hate classics. Database 1992, 15, 104-106.
    • Lawson, A.J.; Swienty-Busch, J.; Géoul, T.; Evans, D. The making of Reaxys-towards unobstructed access to relevant chemical information. In The Future of the History of Chemical Information, American Chemical Society Symposium Series; McEwan, L.R., Buntrock, R.E., Eds.; Oxford University Press: New York, NY, USA, 2014; Volume 1164, Chapter 8, pp. 127-148.
    • Loukine, E.; Stumpfe, D.; Bajorath, J. Molecular formal concept analysis for compound selectivity profiling in biologically annotated databases. J. Chem. Inf. Model. 2009, 49, 1359-1368.
    • Gardiner, E.J.; Gillet, V.J. Perspectives on knowledge discovery algorithms recently introduced in chemoinformatics: Rough set theory, association rule mining, emerging patterns, and formal concept analysis. J. Chem. Inf. Model. 2015, 55, 1781-1803.
    • Comput. Sci. 1975, 15, 52-55.
    • Van der Vet, P.E.; Mars, N.J.I. Structured system of concepts for storing, retrieving, and manipulating chemical information. J. Chem. Inf. Comput. Sci. 1993, 33, 564-568.
    • Hicks, M.G. Similarity and the Beilstein information system: Searching for concepts with current facts. J. Chem. Inf. Comput. Sci. 1992, 32, 631-638.
    • Bawden, D. Chemical reaction information. In Chemical Structure Systems; Ash, J.E., Warr, W.A., Willett, P., Eds.; Ellis Horwood: Chichester, UK, 1991; pp. 57-87.
    • Currano, J.N. Reaction searching. In Chemical Information for Chemists: A Primer; Currano, J.N., Roth, D.L., Eds.; RSC Publishing: Cambridge, UK, 2014; pp. 224-254.
    • Ash, J.E.; Warr, W.A. Databanks. In Chemical Structure Systems; Ash, J.E., Warr, W.A., Willett, P., Eds.; Ellis Horwood: Chichester, UK, 1991; pp. 154-191.
    • Allen, F.H. The Cambridge Structural Database: A quarter of a million crystal structures and rising. Acta Crystallogr. Sec. B Struct. Sci. 2002, 58, 380-388.
    • Wagner, A.B. Physical properties and spectra. In Chemical Information for Chemists: A Primer; Currano, J.N., Roth, D.L., Eds.; RSC Publishing: Cambridge, UK, 2014; pp. 146-183.
    • Chem. Int. Ed. 2014, 53, 662-671.
    • J. Comput. Aided Mol. De. 2014, 28, 1015-1022.
    • Currano, J.N. Searching by structure and substructure. In Chemical Information for Chemists: A Primer; Currano, J.N., Roth, D.L., Eds.; RSC Publishing: Cambridge, UK, 2014; pp. 107-145.
    • Org. Biomol. Chem. 2004, 2, 3204-3218.
    • Willett, P. Similarity-based virtual screening using 2D fingerprints. Drug Discov. Today 2006, 11, 1046-1053.
    • Stumpfe, D.; Bajorath, J. Similarity searching. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2011, 1, 260-282.
    • Lewis, R.A.; Wood, D. Modern 2D QSAR for drug discovery. Wiley Interdiscip. Rev. Comput.
    • Mol. Sci. 2014, 4, 505-522.
    • J. Med. Chem. 2014, 57, 3186-3204.
    • Inform. 2014, 33, 403-413.
    • Charton, B. Searching the literature for concepts. J. Chem. Inf. Comput. Scie. 1977, 17, 45-46.
    • Twiss-Brooks, A. Searching using text: Beyond web search engines. In Chemical Information for Chemists: A Primer; Currano, J.N., Roth, D.L., Eds.; RSC Publishing: Cambridge, UK, 2014; pp. 93-108.
    • 96. Smith, E.G. The Wiswesser Line-Formula Chemical Notation; McGraw-Hill: New York, NY, USA, 1968.
    • 97. Blower, P.E.; Myatt, G.J.; Petras, M.W. Exploring functional group transformations on CASREACT. J. Chem. Inf. Comput. Sci. 1997, 37, 54-58.
    • 98. Loftus, F. Computer-aided synthesis design. In Chemical Structure Systems; Ash, J.E., Warr, W.A., Willett, P., Eds.; Ellis Horwood: Chichester, UK, 1991; pp. 222-262.
    • 99. Batchelor, C. Chemistry ontologies. In The Future of the History of Chemical Information, American Chemical Society Symposium Series; McEwan, L.R., Buntrock, R.E., Eds.; Oxford University Press: New York, NY, USA, 2014; Volume 1164, Chapter 13, pp. 219-235.
    • 100. Barnard, J.M. Structure representation and searching. In Chemical Structure Systems; Ash, J.E., Warr, W.A., Willett, P., Eds.; Ellis Horwood: Chichester, UK, 1991; pp. 9-56.
    • 101. Warr, W.A. Tautomerism in chemical information management systems. J. Comput. Aided Mol. Des. 2010, 24, 497-520.
    • 102. Fujita, S. The stereoisogram approach for remedying discontents of stereochemical terminology. Tetrahedron Asymmetry 2014, 25, 1612-1623.
    • 103. Mills, J.E.; Baughman, B. REACCS in the chemical development environment. 3. Graphically nonequivalent representation of molecules and reactions. J. Chem. Inf. Comput. Sci. 1990, 30, 431-435.
    • 104. Gakh, A.A.; Burmett, M.N.; Trepalin, S.V.; Yarkov, A.V. Modular Chemical Descriptor Language (MCDL): Stereochemical modules. J. Cheminform. 2011, doi:10.1186/1758-2946-3-5.
    • 105. Jiang, L.; Rizzo, R.C. Pharmacophore-based similarity scoring for DOCK. J. Phys. Chem. B 2015, 119, 1083-1102.
    • 106. Pickett, S.D.; Luttmann, C.; Guerin, V.; Laoui, A.; James, E. DIVSEL and COMPLIB-strategies for the design and comparison of combinatorial libraries using pharmacophoric descriptors. J. Chem. Inf. Comput. Sci. 1998, 38, 144-150.
    • 107. Todd, M.H. Computer-aided organic synthesis. Chem. Soc. Rev. 2005, 34, 247-266.
    • 108. Walker, M.A. Public chemical databases and the Semantic Web. In The Future of the History of Chemical Information, American Chemical Society Symposium Series; McEwan, L.R., Buntrock, R.E., Eds.; Oxford University Press: New York, NY, 2014; Volume 1164, Chapter 12, pp. 197-217.
  • Inferred research data

    The results below are discovered through our pilot algorithms. Let us know how we are doing!

    Title Trust
    61
    61%
  • No similar publications.

Share - Bookmark

Cite this article