Remember Me
Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:

OpenAIRE is about to release its new face with lots of new content and services.
During September, you may notice downtime in services, while some functionalities (e.g. user registration, login, validation, claiming) will be temporarily disabled.
We apologize for the inconvenience, please stay tuned!
For further information please contact helpdesk[at]openaire.eu

fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Vanita, V.; Hejtmancik, J.F.; Hennies, Hans C.; Guleria, K.; Nürnberg, P.; Singh, D.; Sperling, K.; Singh, J.R. (2006)
Languages: English
Types: Article
Subjects: QH301, QH426
PURPOSE:\ud The molecular characterization of 27 members of an Indian family, with 13 members in four generations, affected with Y-sutural congenital cataract.\ud METHODS:\ud Detailed family history and clinical data were collected. A genome-wide scan by two-point linkage analysis using more than 400 microsatellite markers in combination with multipoint lod score and haplotype analysis was performed. Mutation screening was carried out in the candidate gene by bi-directional sequencing of amplified products.\ud RESULTS:\ud A maximum two-point lod score of 6.37 at theta=0.00 was obtained with marker D19S879. Haplotype analysis placed the cataract locus to a 5.0 cM region between D19S902 and D19S867, in close proximity to the L-ferritin light chain gene (FTL) on chromosome 19q13.3. Hematological tests in two affected individuals showed very high levels of serum ferritin without iron overload leading to the diagnosis of hyperferritinemia-cataract syndrome. Mutation screening in FTL identified a G>A change at position 32 (c.-168G>A) in a highly conserved 3 nucleotide motif that forms a loop structure in the iron responsive element (IRE) in the 5'-untranslated region (5'-UTR). This nucleotide alteration was neither seen in any unaffected member of the family nor found in 50 unrelated control subjects.\ud CONCLUSIONS:\ud The present study is the first report of a Y-sutural congenital cataract mapping to 19q13.3. The mutation observed in FTL in this family highlights the phenotypic heterogeneity of the disorder in relation to the genotype as the identical mutation (32 G>A) has previously been reported in two Italian families with entirely different phenotypes. It is also the first report of hereditary hyperferritinemia-cataract syndrome in a family of Indian origin.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 1. Rahi JS, Dezateaux C, British Congenital Cataract Interest Group. Measuring and interpreting the incidence of congenital ocular anomalies: lessons from a national study of congenital cataract in the UK. Invest Ophthalmol Vis Sci 2001; 42:1444-8.
    • 2. Wirth MG, Russell-Eggitt IM, Craig JE, Elder JE, Mackey DA. Aetiology of congenital and paediatric cataract in an Australian population. Br J Ophthalmol 2002; 86:782-6.
    • 3. Vanita, Singh JR, Singh D. Genetic and segregation analysis of congenital cataract in the Indian population. Clin Genet 1999; 56:389-93.
    • 4. McKusick VA. Mendelian Inheritance in Man. A Catalog of Human Genes and Genetic Disorders. 12th ed. Baltimore (MD): Johns Hopkins University Press; 1998.
    • 5. Amaya L, Taylor D, Russell-Eggitt I, Nischal KK, Lengyel D. The morphology and natural history of childhood cataracts. Surv Ophthalmol 2003; 48:125-44.
    • 6. Jaffe NS, Horwitz J. Lens and cataract. In: Podos SM, Yanoff M, editors. Text book of Ophthalmology. Vol. 3. New York: Gower Medical Publishing; 1992. p. 1.7.
    • 7. Kuszak JR, Zoltoski RK, Tiedemann CE. Development of lens sutures. Int J Dev Biol 2004; 48:889-902.
    • 8. Kuszak JR, Al-Ghoul KJ, Novak LA, Peterson KL, Herbert KL, Sivak JG. The internalization of posterior subcapsular cataracts (PSCs) in Royal College of Surgeons (RCS) rats. II. The interrelationship of optical quality and structure as a function of age. Mol Vis 1999; 5:7 .
    • 9. Eiberg H, Lund AM, Warburg M, Rosenberg T. Assignment of congenital cataract Volkmann type (CCV) to chromosome 1p36. Hum Genet 1995; 96:33-8.
    • 10. Conley YP, Erturk D, Keverline A, Mah TS, Keravala A, Barnes LR, Bruchis A, Hess JF, FitzGerald PG, Weeks DE, Ferrell RE, Gorin MB. A juvenile-onset, progressive cataract locus on chromosome 3q21-q22 is associated with a missense mutation in the beaded filament structural protein-2. Am J Hum Genet 2000; 66:1426-31.
    • 11. Jakobs PM, Hess JF, FitzGerald PG, Kramer P, Weleber RG, Litt M. Autosomal-dominant congenital cataract associated with a deletion mutation in the human beaded filament protein gene BFSP2. Am J Hum Genet 2000; 66:1432-6.
    • 12. Zhang Q, Guo X, Xiao X, Yi J, Jia X, Hejtmancik JF. Clinical description and genome wide linkage study of Y-sutural cataract and myopia in a Chinese family. Mol Vis 2004; 10:890-900 .
    • 13. Vanita, Singh JR, Sarhadi VK, Singh D, Reis A, Rueschendorf F, Becker-Follmann J, Jung M, Sperling K. A novel form of “central pouchlike” cataract, with sutural opacities, maps to chromosome 15q21-22. Am J Hum Genet 2001; 68:509-14.
    • 14. Bu L, Jin Y, Shi Y, Chu R, Ban A, Eiberg H, Andres L, Jiang H, Zheng G, Qian M, Cui B, Xia Y, Liu J, Hu L, Zhao G, Hayden MR, Kong X. Mutant DNA-binding domain of HSF4 is associated with autosomal dominant lamellar and Marner cataract. Nat Genet 2002; 31:276-8.
    • 15. Padma T, Ayyagari R, Murty JS, Basti S, Fletcher T, Rao GN, Kaiser-Kupfer M, Hejtmancik JF. Autosomal dominant zonular cataract with sutural opacities localized to chromosome 17q11- 12. Am J Hum Genet 1995; 57:840-5.
    • 16. Mackay DS, Boskovska OB, Knopf HL, Lampi KJ, Shiels A. A nonsense mutation in CRYBB1 associated with autosomal dominant cataract linked to human chromosome 22q. Am J Hum Genet 2002; 71:1216-21.
    • 17. Vanita, Sarhadi V, Reis A, Jung M, Singh D, Sperling K, Singh JR, Burger J. A unique form of autosomal dominant cataract explained by gene conversion between beta-crystallin B2 and its pseudogene. J Med Genet 2001; 38:392-6.
    • 18. Boyadjiev SA, Justice CM, Eyaid W, McKusick VA, Lachman RS, Chowdry AB, Jabak M, Zwaan J, Wilson AF, Jabs EW. A novel dysmorphic syndrome with open calvarial sutures and sutural cataracts maps to chromosome 14q13-q21. Hum Genet 2003; 113:1-9.
    • 19. Burdon KP, McKay JD, Sale MM, Russell-Eggitt IM, Mackey DA, Wirth MG, Elder JE, Nicoll A, Clarke MP, FitzGerald LM, Stankovich JM, Shaw MA, Sharma S, Gajovic S, Gruss P, Ross S, Thomas P, Voss AK, Thomas T, Gecz J, Craig JE. Mutations in a novel gene, NHS, cause the pleiotropic effects of NanceHoran syndrome, including severe congenital cataract, dental anomalies, and mental retardation. Am J Hum Genet 2003; 73:1120-30.
    • 20. Girelli D, Corrocher R, Bisceglia L, Olivieri O, De Franceschi L, Zelante L, Gasparini P. Molecular basis for the recently described hereditary hyperferritinemia-cataract syndrome: a mutation in the iron-responsive element of ferritin L-subunit gene (the “Verona mutation”). Blood 1995; 86:4050-3.
    • 21. Levi S, Girelli D, Perrone F, Pasti M, Beaumont C, Corrocher R, Albertini A, Arosio P. Analysis of ferritins in lymphoblastoid cell lines and in the lens of subjects with hereditary hyperferritinemia-cataract syndrome. Blood 1998; 91:4180-7.
    • 22. Mumford AD, Vulliamy T, Lindsay J, Watson A. Hereditary hyperferritinemia-cataract syndrome: two novel mutations in the L-ferritin iron-responsive element. Blood 1998; 91:367-8.
    • 23. Beaumont C, Leneuve P, Devaux I, Scoazec JY, Berthier M, Loiseau MN, Grandchamp B, Bonneau D. Mutation in the iron responsive element of the L ferritin mRNA in a family with dominant hyperferritinaemia and cataract. Nat Genet 1995; 11:444-6.
    • 24. Cazzola M, Bergamaschi G, Tonon L, Arbustini E, Grasso M, Vercesi E, Barosi G, Bianchi PE, Cairo G, Arosio P. Hereditary hyperferritinemia-cataract syndrome: relationship between phenotypes and specific mutations in the iron-responsive element of ferritin light-chain mRNA. Blood 1997; 90:814-21.
    • 25. Dib C, Faure S, Fizames C, Samson D, Drouot N, Vignal A, Millasseau P, Marc S, Hazan J, Seboun E, Lathrop M, Gyapay G, Morissette J, Weissenbach J. A comprehensive genetic map of the human genome based on 5,264 microsatellites. Nature 1996; 380:152-4.
    • 26. Lathrop GM, Lalouel JM. Easy calculations of lod scores and genetic risks on small computers. Am J Hum Genet 1984; 36:460-5.
    • 27. Kruglyak L, Daly MJ, Reeve-Daly MP, Lander ES. Parametric and nonparametric linkage analysis: a unified multipoint approach. Am J Hum Genet 1996; 58:1347-63.
    • 28. Cicilano M, Zecchina G, Roetto A, Bosio S, Infelise V, Stefani S, Mazza U, Camaschella C. Recurrent mutations in the iron regulatory element of L-ferritin in hereditary hyperferritinemia-cataract syndrome. Haematologica 1999; 84:489-92.
    • 29. Leibold EA, Laudano A, Yu Y. Structural requirements of ironresponsive elements for binding of the protein involved in both transferrin receptor and ferritin mRNA post-transcriptional regulation. Nucleic Acids Res 1990; 18:1819-24.
    • 30. Jaffrey SR, Haile DJ, Klausner RD, Harford JB. The interaction between the iron-responsive element binding protein and its cognate RNA is highly dependent upon both RNA sequence and structure. Nucleic Acids Res 1993; 21:4627-31.
    • 31. Martin ME, Fargion S, Brissot P, Pellat B, Beaumont C. A point mutation in the bulge of the iron-responsive element of the L ferritin gene in two families with the hereditary hyperferritinemia-cataract syndrome. Blood 1998; 91:319-23.
    • 32. Allerson CR, Cazzola M, Rouault TA. Clinical severity and thermodynamic effects of iron-responsive element mutations in hereditary hyperferritinemia-cataract syndrome. J Biol Chem 1999; 274:26439-47.
    • 33. Balas A, Aviles MJ, Garcia-Sanchez F, Vicario JL. Description of a new mutation in the L-ferrin iron-responsive element associated with hereditary hyperferritinemia-cataract syndrome in a Spanish family. Blood 1999; 93:4020-1.
    • 34. Girelli D, Bozzini C, Zecchina G, Tinazzi E, Bosio S, Piperno A, Ramenghi U, Peters J, Levi S, Camaschella C, Corrocher R. Clinical, biochemical and molecular findings in a series of families with hereditary hyperferritinaemia-cataract syndrome. Br J Haematol 2001; 115:334-40.
    • 35. Perez de Nanclares G, Castano L, Martul P, Rica I, Vela A, Sanjurjo P, Aldamiz-Echevarria K, Martinez R, Sarrionandia MJ. Molecular analysis of hereditary hyperferritinemia-cataract syndrome in a large Basque family. J Pediatr Endocrinol Metab 2001; 14:295-300.
    • 36. Brooks DG, Manova-Todorova K, Farmer J, Lobmayr L, Wilson RB, Eagle RC Jr, St Pierre TG, Stambolian D. Ferritin crystal cataracts in hereditary hyperferritinemia cataract syndrome. Invest Ophthalmol Vis Sci 2002; 43:1121-6.
    • 37. Mumford AD, Cree IA, Arnold JD, Hagan MC, Rixon KC, Harding JJ. The lens in hereditary hyperferritinaemia cataract syndrome contains crystalline deposits of L-ferritin. Br J Ophthalmol 2000; 84:697-700.
    • 38. Kato GJ, Casella F. L-ferritin-Baltimore-1: a novel mutation in the iron response element (C32G) as a cause of the hyperferritinemia-cataract syndrome [abstract]. Blood. 1999; 94:407a.
    • 39. Campagnoli MF, Pimazzoni R, Bosio S, Zecchina G, DeGobbi M, Bosso P, Oldani B, Ramenghi U. Onset of cataract in early infancy associated with a 32G->C transition in the iron responsive element of L-ferritin. Eur J Pediatr 2002; 161:499- 502.
    • 40. Craig JE, Clark JB, McLeod JL, Kirkland MA, Grant G, Elder JE, Toohey MG, Kowal L, Savoia HF, Chen C, Roberts S, Wirth MG, Mackey DA. Hereditary hyperferritinemia-cataract syndrome: prevalence, lens morphology, spectrum of mutations, and clinical presentations. Arch Ophthalmol 2003; 121:1753- 61.
    • 41. McLeod JL, Craig J, Gumley S, Roberts S, Kirkland MA. Mutation spectrum in Australian pedigrees with hereditary hyperferritinaemia-cataract syndrome reveals novel and de novo mutations. Br J Haematol 2002; 118:1179-82.
    • 42. Hetet G, Devaux I, Soufir N, Grandchamp B, Beaumont C. Molecular analyses of patients with hyperferritinemia and normal serum iron values reveal both L ferritin IRE and 3 new ferroportin (slc11A3) mutations. Blood 2003; 102:1904-10.
    • The print version of this article was created on 23 Feb 2006. This reflects all typographical corrections and errata to the article through that date. Details of any changes may be found in the online version of the article. α 99
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article

Cookies make it easier for us to provide you with our services. With the usage of our services you permit us to use cookies.
More information Ok