Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Publisher: American Chemical Society
Languages: English
Types: Article
Sodium chlorate (NaClO3) crystallizes in the enantiomorphic space group P213 which allows two chiral structural configurations (l and d forms). These crystals can form growth twins when the solution contains impurity ions of dithionate with the mole ratio 1:1000 (dithionate/chlorate) or higher. The impurity modifies the crystal habit from a cube-like morphology to one dominated by the minor {111} tetrahedral form. An X-ray topography study and the experimental observation of crystal growth reveal that the twinning phenomenon is consistent either as a result of the surface nucleation of a tetrahedral crystal of the morphologically opposite chirality on an existing tetrahedral habit face or by twinning at the nucleation stage and subsequent growth as two intergrown tetrahedral crystals. Polarized optical microscopy reveals that the optical activities of the twinned crystals observed are inversed with respect to each other. This is consistent with a merohedral mirror twinning system following twin law of m(001) (or identically 1̅). Modeling of the crystal structure with respect to its external morphology is consistent with the dithionate impurity ions substituting for two adjacent chlorate ions at the twin boundary one from each of the contacting twin domains, through this creating a heterochiral twinned interface.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • (3) Clydesdale, G.; Roberts, K. J.; Telfer, G. B.; Saunders, V. R.; Pugh, D.; Jackson, R. A.; Meenan, P. Prediction of the Polar Morphology of Sodium Chlorate Using a Surface-Specific Attachment Energy Model. J. Phys. Chem. B 1998, 102, 7044−7049.
    • (4) Telfer, G. B.; Gale, J. D.; Roberts, K. J.; Jackson, R. a.; Wilde, P. J.; Meenan, P. A Transferable Interatomic Potential for Alkali Chlorates and Bromates. Acta Crystallogr. Sect. A Found. Crystallogr. 1997, 53, 415−420.
    • (5) Ristic, R.; Shekunov, B. Y.; Sherwood, J. N. Growth of the tetrahedral faces of sodium chlorate crystals in the presence of dithionate impurity. J. Cryst. Growth 1994, 139, 336−343.
    • (6) Lan, Z. P. The Structural Role of Sodium Dithionate Impurity in the Habit Modification of Sodium Chlorate Single Crystals, Ph.D.
    • Thesis, University of Leeds, 2014.
    • (7) Hooper, R. M.; Roberts, K. J.; Sherwood, J. N. X-ray topographic investigations of dislocations in sodium chlorate. J. Mater. Sci. 1983, 18, 81−88.
    • (8) Klapper, H. Defects in non-metal crystals. In Characterization of Crystal Growth Defects by X-Ray Methods; Tanner, B. K.; Bowen, D. K., Eds.; Plenum Press: New York, 1980; p 156.
    • (9) Begg, I. D.; Halfpenny, P. J.; Hooper, R. M.; Narang, R. S.; Roberts, K. J.; Sherwood, J. N. X-Ray Topographic Investigations of Solid State Reactions. I. Changes in Surface and Bulk Substructure During Incipient Thermal Decomposition in Sodium Chlorate Monocrystals. Proc. R. Soc. A Math. Phys. Eng. Sci. 1983, 386, 431−442.
    • (10) Buckley, H. E. The influence of RO4 and related ions on the crystallisation of sodium chlorate. Z. Krist. 1930, 75, 15−31.
    • (11) Lang, A. R. Topography. In International Table for Crystallography; Wiley: New York, 2006; Vol. C, pp 113−123.
    • (12) Tanner, B. K. X-ray Diffraction Topography; Pergamon Press: Oxford, 1976.
    • (13) Lang, A. R. Techniques and interpretation in X-ray topography.
    • In Diffraction and Imaging Techniques in Materials Science; Amelinckx, S.; Gevers, R.; Van Landuyt, J., Eds.; Elsevier : Amsterdam, 1978; pp 623−714.
    • (14) Klapper, H. X-ray topography of twinned crystals. Prog. Cryst.
    • Growth Charact. Mater. 1987, 14, 367−401.
    • (15) Klapper, H.; Hahn, T.; Chung, S. J. Optical, pyroelectric and Xray topographic studies of twin domains and twin boundaries in KLiSO4. Acta Crystallogr. Sect. B Struct. Sci. 1987, 43, 147−159.
    • (16) Docherty, R.; El-Korashy, a.; Jennissen, H.-D.; Klapper, H.; Roberts, K. J.; Scheffen-Lauenroth, T. Synchrotron Laue topography studies of pseudo-hexagonal twinning. J. Appl. Crystallogr. 1988, 21, 406−415.
    • (17) Bunn, C. Chemical Crystallography; Clarendon Press: Oxford, 1961; p 91.
    • (18) Abrahams, S. C.; Bernstein, J. L. Remeasurement of optically active NaClO3 and NaBrO3. Acta Crystallogr., Sect. B: Struct. Sci., Cryst.
    • Eng. Mater. 1977, 33, 3601−3604.
    • (19) Kirfel, A.; Will, G.; Weiss, A. X-ray diffraction study of Na2S2O6· 2H2O and Na2S2O6·2D2O. Acta Crystallogr., Sect. B: Struct. Sci., Cryst.
    • Eng. Mater. 1980, 36, 223−228.
    • (20) Lan, Z. P.; Lai, X.; Roberts, K. J.; Klapper, H. J. Appl. Phys. 2014, in preparation.
    • (21) Catti, M.; Ferraris, G. Twinning by merohedry and X-ray crystal structure determination. Acta Crystallogr., Sect. A 1976, 32, 163−165.
    • (22) Hahn, T.; Klapper, H. Twinning of crystals. In International Table for Crystallography; Wiley: New York, 2006; Vol. D, pp 393− 448.
    • (23) Machado, W. G.; Moore, M.; Yacoot, A. Twinning in Natural Diamond. II. Interpenetrant Cubes. J. Appl. Crystallogr. 1998, 31, 777− 782.
    • (24) Diehl, R.; Jantz, W.; Nolaeng, B. I.; Wettling, W. Growth and properties of iron borate, FeBO3. In Currents Topics in Material Science; Kaldis, E., Eds.; ECS: Pennington, NJ, 1984, 11, 241−387.
    • (25) Senechal, M. The genesis of growth twins in crystals. Sov.
    • Phys.Crystallogr. 1980, 25, 520−524.
  • No related research data.
  • Discovered through pilot similarity algorithms. Send us your feedback.

Share - Bookmark

Cite this article