LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Publisher: Royal Society of Chemistry
Languages: English
Types: Article
Subjects: F200, H300, J500
This paper investigates mechanics of hybrid shape memory polymer polystrene (PS) based nanocomposites with skeleton structures of CNFs/MWCNTs formed inside. Experimental results showed an increase of glass transition temperature (Tg) with CNF/MWCNT concentrations instead of a decrease of Tg in nanocomposites filled by spherical particles, and an increase in mechanical properties on both macro- and small mu m- scales. Compared with CNFs{,} MWCNTs showed a better mechanical enhancement for PS nanocomposite due to their uniform distribution in the nanocomposites. In nanoindentation tests using the Berkovich tips{,} indentation size effects and pile-up effects appeared obviously for the nanocomposites{,} but not for the pure PS. Experimental results revealed the enhancement mechanisms of CNFs/MWCNTs related to the secondary structures formed by nanofillers{,} including two aspects{,} i.e.{,} filler-polymer interfacial connections and geometrical factors of nanofillers. The filler-polymer interfacial connections were strongly dependent on temperature{,} thus leading the oppsite changing trend of loss tangent with nanofiller concentrations respectively at low and high temperature. The geometrical factors of nanofillers was related to testing scles{,} further leading to the appearance of pile-up effects for nanocomposites in the nanoindentation tests{,} in which the size of indents was close to the size of the nanofiller skeleton.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • connection, which is due to the localization of polymer chains 15 J. Leng, H. B. Lu, Y. Liu and S. Du, J. Appl. Phys., 2008, on the surface of nanofillers, relies on the temperature. The high 104(10), 104917.
    • energetic hole at Tl and low energetic hole at Th of polymer chain 16 Q. Q. Ni, C. Zhang, Y. Fu, G. Dai and T. Kimura, Compos.
    • localization lead to the opposite trends of loss tangent with Struct., 2007, 81(2), 176-184.
    • nanofiller concentrations at Tl and at Th. The geometrical factors 17 I. S. Gunes, G. A. Jimenez and S. C. Jana, Carbon, 2009, of CNFs/MWCNTs are due to the large ratio of length and 47(4), 981-997.
    • diameter, and the enhancement effects of nanofillers on the 18 Y. C. Jung, H. J. Yoo, Y. A. Kim, J. W. Cho and M. Endo, motion of polymer molecules only work when the testing scale is Carbon, 2010, 48(5), 1598-1603.
    • larger than the size of the filler networks. Because in the 19 T. Ohki, Q. Q. Ni, N. Ohsako and M. Iwamoto, Composites, nanoindentation tests, the size of indents (4-6 mm) is very close Part A, 2004, 35(9), 1065-1073.
    • to the size of the nanofiller networks (about 1-5 mm), the pile-up 20 K. Yu, Q. Ge and H. J. Qi, Polymer, 2014, 55(23), 5938-5947.
    • effects are obvious in the nanocomposites compared with those 21 C. C. Fu, A. Grimes, M. Long, C. G. Ferri, B. D. Rich, in the pure PS, further leading to the failed prediction from the S. Ghosh, L. P. Lee, M. Gopinathan and M. Khine, Adv.
    • O&P criterion for the polymer based nanocomposites. Mater., 2009, 21(44), 4472-4476. 22 H. J. Qi, K. B. K. Teo, M. C. Boyce, W. I. Milne, J. Robertson and K. K. Gleason, J. Mech. Phys. Solids, 2003, 51(11), Acknowledgements 2213-2237. 23 E. Wornyo, K. Gall, F. Yang and W. King, Polymer, 2007, The authors acknowledge the financial support from Royal 48(11), 3213-3225.
    • Academy of Engineering-Research Exchanges with China and 24 J. T. Fulcher, Y. C. Lu, G. P. Tandon and D. C. Foster, Polym.
    • India Awards and UoA flexible fund from Northumbria University at Test., 2010, 29(5), 544-552.
    • Newcastle upon Tyne, the National Natural Science Foundation of 25 B. A. Nelson, W. P. King and K. Gall, Appl. Phys. Lett., 2005, China (NSFC) under Grant No. 11422217. Ben would like to thank 86(10), 103108.
    • the support from EU-COST, RSC and REECE INNOVATION. The 26 F. Li and R. C. Larock, Biomacromolecules, 2003, 4(4), authors also acknowledge the help of the anonymous reviewers, 1018-1025.
    • whose insightful comments and advices greatly improved this paper. 27 B. Xu, Y. Q. Fu, M. Ahmad, J. K. Luo and W. M. Huang, J. Mater. Chem., 2010, 20(17), 3442-3448.
    • References 28 B. Xu, L. Zhang, Y. T. Pei, J. K. Luo, S. W. Tao, J. T. M. De Hosson and Y. Q. Fu, Nanosci. Nanotechnol. Lett., 2012, 4(8), 1 B. S. Lee, B. C. Chun, Y. C. Chung, K. I. Sul and J. W. Cho, 814-820. Macromolecules, 2001, 34(18), 6431-6437. 29 M. Baghani, R. Naghdabadi, J. Arghavani and S. Sohrabpour, 2 B. Xu, W. M. Huang, Y. T. Pei, Z. G. Chen, A. Kraft, Int. J. Plast., 2012, 35, 13-30. R. Reuben, J. T. M. D. Hosson and Y. Q. Fu, Eur. Polym. J., 30 B. Xu, D. Chen and R. C. Hayward, Adv. Mater., 2014, 26(25), 2009, 45(7), 1904-1911. 4381-4385.
    • 3 X. F. Luo and P. T. Mather, Soft Matter, 2010, 6(10), 2146-2149. 31 T. Chudoba and F. Richter, Surf. Coat. Technol., 2001, 4 Q. Zhao, H. J. Qi and T. Xie, Prog. Polym. Sci., 2015, 148(2), 191-198. 49-50(10-11), 79-120. 32 W. C. Oliver and G. M. Pharr, J. Mater. Res., 1992, 7(06), 5 A. Lendlein, H. Jiang, O. Ju¨nger and R. Langer, Nature, 2005, 1564-1583. 434(7035), 879-882. 33 K. C. Maner, M. R. Begley and W. C. Oliver, Acta Mater., 6 H. B. Lu, M. Lei, Y. T. Yao, K. Yu and Y. Q. Fu, Nanosci. 2004, 52(19), 5451-5460. Nanotechnol. Lett., 2014, 6(9), 772-786. 34 W. C. Oliver and G. M. Pharr, J. Mater. Res., 2004, 19(01), 7 H. B. Lu, M. Lei, C. Zhao, B. Xu, J. Leng and Y. Q. Fu, Smart 3-20. Mater. Struct., 2015, 24(4), 045015. 35 J. N. Coleman, U. Khan, W. J. Blau and Y. K. Gun'ko, Carbon, 8 I. V. Ward Small, P. Singhal, T. S. Wilson and D. J. Maitland, 2006, 44(9), 1624-1652. J. Mater. Chem., 2010, 20(17), 3356-3366. 36 Y. Liu, K. Gall, M. L. Dunn, A. R. Greenberg and J. Diani, Int.
    • 9 J. Reeder, M. Kaltenbrunner and T. Ware, et al., Adv. Mater., J. Plast., 2006, 22(2), 279-313. 2014, 26(29), 4967-4973. 37 T. A. Vilgis, G. Heinrich and M. Klu¨ppel, Cambridge 10 J. Leng, X. Lan, Y. Liu and S. Du, Prog. Mater. Sci., 2011, University Press, 2009, vol. 9-10, pp. 118-195. 56(7), 1077-1135. 38 X. D. Li, H. S. Gao, W. A. Scrivens, D. L. Fei, X. Y. Xu, 11 T. Xie, Nature, 2010, 464(7286), 267-270. M. A. Sutton, A. P. Reynolds and M. L. Myrick, Nanotechnology, 12 H. B. Lu and W. M. Huang, Appl. Phys. Lett., 2013, 2004, 15(11), 1416. 102(23), 231910. 39 M. L. Oyen and R. F. Cook, J. Mater. Res., 2003, 18(01), 13 Z. He, N. Satarkar, T. Xie, Y. T. Cheng and J. Z. Hilt, Adv. 139-150. Mater., 2011, 23(28), 3192-3196. 40 A. Iost and R. Bigot, J. Mater. Sci., 1996, 31(13), 3573-3577.
    • 14 I. S. Gunes, F. Cao and S. C. Jana, Polymer, 2008, 49(9), 41 I. Manika and J. Maniks, Acta Mater., 2006, 54(8), 2223-2234. 2049-2056.
    • 42 C. S. Han and S. Nikolov, J. Mater. Res., 2007, 22(6), 1662-1672. 47 X. Chen and J. J. Vlassak, J. Mater. Res., 2001, 16(10), 43 D. Tranchida, S. Piccarolo, J. Loos and A. Alexeev, Macro- 2974-2982. molecules, 2007, 40(4), 1259-1267. 48 Y. Q. Fu, C. Shearwood, B. Xu, L. G. Yu and K. A. Khor, 44 F. Bedoui, F. Sansoz and N. S. Murthy, Acta Mater., 2008, Nanotechnology, 2010, 21(11), 115707. 56(10), 2296-2306. 49 Q. Zia, R. Androsch, H. J. Radusch and S. Piccarolo, Polymer, 45 A. Bolshakov and G. M. Pharr, J. Mater. Res., 1998, 13(04), 2006, 47(24), 8163-8172. 1049-1058. 50 J. L. Loubet, J. M. Georges and G. Meille, Microindentation 46 B. Du, O. K. Tsui, Q. Zhang and T. He, Langmuir, 2001, techniques in materials science and engineering, ASTM STP, 17(11), 3286-3291. 1986, 889, 72-89.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article