LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Publisher: BMJ Publishing Group Limited
Languages: English
Types: Article
Subjects: Article
Identifiers:pmc:PMC3932658
Background \ud The XRCC2 gene is a key mediator in the homologous recombination repair of DNA double strand breaks. It is hypothesised that inherited variants in the XRCC2 gene might also affect susceptibility to, and survival from, breast cancer.\ud \ud Methods \ud The study genotyped 12 XRCC2 tagging single nucleotide polymorphisms (SNPs) in 1131 breast cancer cases and 1148 controls from the Sheffield Breast Cancer Study (SBCS), and examined their associations with breast cancer risk and survival by estimating ORs and HRs, and their corresponding 95% CIs. Positive findings were further investigated in 860 cases and 869 controls from the Utah Breast Cancer Study (UBCS) and jointly analysed together with available published data for breast cancer risk. The survival findings were further confirmed in studies (8074 cases) from the Breast Cancer Association Consortium (BCAC).\ud \ud Results \ud The most significant association with breast cancer risk in the SBCS dataset was the XRCC2 rs3218408 SNP (recessive model p=2.3×10−4, minor allele frequency (MAF)=0.23). This SNP yielded an ORrec of 1.64 (95% CI 1.25 to 2.16) in a two-site analysis of SBCS and UBCS, and a meta-ORrec of 1.33 (95% CI 1.12 to 1.57) when all published data were included. This SNP may mark a rare risk haplotype carried by two in 1000 of the control population. Furthermore, the XRCC2 coding R188H SNP (rs3218536, MAF=0.08) was significantly associated with poor survival, with an increased per-allele HR of 1.58 (95% CI 1.01 to 2.49) in a multivariate analysis. This effect was still evident in a pooled meta-analysis of 8781 breast cancer patients from the BCAC (HR 1.19, 95% CI 1.05 to 1.36; p=0.01).\ud \ud Conclusions \ud These findings suggest that XRCC2 SNPs may influence breast cancer risk and survival.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 1. van Gent DC, Hoeijmakers JHJ, Kanaar R. Chromosomal stability and the DNA double-stranded break connection. Nat Rev Genet. 2001; 2:196-206. [PubMed: 11256071]
    • 2. Khanna KK, Jackson SP. DNA double-strand breaks: signaling, repair and the cancer connection. Nat Genet. 2001; 27:247-254. [PubMed: 11242102]
    • 3. Moynahan ME, Chiu JW, Koller BH, Jasin M. Brca1 controls homology-directed DNA repair. Mol Cell. 1999; 4:511-518. [PubMed: 10549283]
    • 4. Moynahan ME, Pierce AJ, Jasin M. BRCA2 is required for homology-directed repair of chromosomal breaks. Mol Cell. 2001; 7:263-272. [PubMed: 11239455]
    • 5. Miki Y, Swensen J, ShattuckEidens D, Futreal PA, Harshman K, Tavtigian S, Liu QY, Cochran C, Bennett LM, Ding W, Bell R, Rosenthal J, Hussey C, Tran T, McClure M, Frye C, Hattier T, Phelps R, Haugenstrano A, Katcher H, Yakumo K, Gholami Z, Shaffer D, Stone S, Bayer S, Wray C, Bogden R, Dayananth P, Ward J, Tonin P, Narod S, Bristow PK, Norris FH, Helvering L, Morrison P, Rosteck P, Lai M, Barrett JC, Lewis C, Neuhausen S, CannonAlbright L, Goldgar D, Wiseman R, Kamb A, Skolnick MH. A Strong Candidate for the Breast and Ovarian-Cancer Susceptibility Gene Brca1. Science. 1994; 266:66-71. [PubMed: 7545954]
    • 6. Wooster R, Bignell G, Lancaster J, Swift S, Seal S, Mangion J, Collins N, Gregory S, Gumbs C, Micklem G, Barfoot R, Hamoudi R, Patel S, Rice C, Biggs P, Hashim Y, Smith A, Connor F, Arason A, Gudmundsson J, Ficenec D, Kelsell D, Ford D, Tonin P, Bishop DT, Spurr NK, Ponder BAJ, Eeles R, Peto J, Devilee P, Cornelisse C, Lynch H, Narod S, Lenoir G, Egilsson V, Barkadottir RB, Easton DF, Bentley DR, Futreal PA, Ashworth A, Stratton MR. Identification of the Breast-Cancer Susceptibility Gene Brca2. Nature. 1995; 378:789-792. [PubMed: 8524414]
    • 7. Cartwright R, Tambini CE, Simpson PJ, Thacker J. The XRCC2 DNA repair gene from human and mouse encodes a novel member of the recA/RAD51 family. Nucleic Acids Res. 1998; 26:3084- 3089. [PubMed: 9628903]
    • 8. Liu N, Lamerdin JE, Tebbs RS, Schild D, Tucker JD, Shen MR, Brookman KW, Siciliano MJ, Walter CA, Fan WF, Narayana LS, Zhou ZQ, Adamson AW, Sorensen KJ, Chen DJ, Jones NJ, Thompson LH. XRCC2 and XRCC3, new human Rad51-family members, promote chromosome stability and protect against DNA cross-links and other damages. Mol Cell. 1998; 1:783-793. [PubMed: 9660962]
    • 9. Johnson RD, Liu N, Jasin M. Mammalian XRCC2 promotes the repair of DNA double-strand breaks by homologous recombination. Nature. 1999; 401:397-399. [PubMed: 10517641]
    • 10. Cui X, Brenneman M, Meyne J, Oshimura M, Goodwin EH, Chen DJ. The XRCC2 and XRCC3 repair genes are required for chromosome stability in mammalian cells. Mutation Research-DNA Repair. 1999; 434:75-88. [PubMed: 10422536]
    • 11. Griffin CS, Simpson PJ, Wilson CR, Thacker J. Mammalian recombination-repair genes XRCC2 and XRCC3 promote correct chromosome segregation. Nat Cell Biol. 2000; 2:757-761. [PubMed: 11025669]
    • 12. Deans B, Griffin CS, O'Regan P, Jasin M, Thacker J. Homologous recombination deficiency leads to profound genetic instability in cells derived from Xrcc2-knockout mice. Cancer Res. 2003; 63:8181-8187. [PubMed: 14678973]
    • 13. Huang HM, Fletcher L, Beeharry N, Daniel R, Kao G, Yen TJ, Muschel RJ. Abnormal cytokinesis after X-irradiation in tumor cells that override the G(2) DNA damage checkpoint. Cancer Res. 2008; 68:3724-3732. [PubMed: 18483255]
    • 14. O'Regan P, Wilson C, Townsend S, Thacker J. XRCC2 is a nuclear RAD51-like protein required for damage-dependent RAD51 focus formation without the need for ATP binding. J Biol Chem. 2001; 276:22148-22153. [PubMed: 11301337]
    • 15. Takata M, Sasaki MS, Tachiiri S, Fukushima T, Sonoda E, Schild D, Thompson LH, Takeda S. Chromosome instability and defective recombinational repair in knockout mutants of the five Rad51 paralogs. Mol Cell Biol. 2001; 21:2858-2866. [PubMed: 11283264]
    • 16. Liu N, Schild D, Thelen MP, Thompson LH. Involvement of Rad51C in two distinct protein complexes of Rad51 paralogs in human cells. Nucleic Acids Res. 2002; 30:1009-1015. [PubMed: 11842113]
    • 17. Tsaryk R, Fabian K, Thacker J, Kaina B. Xrcc2 deficiency sensitizes cells to apoptosis by MNNG and the alkylating anticancer drugs temozolomide, fotemustine and mafosfamide. Cancer Lett. 2006; 239:305-313. [PubMed: 16298473]
    • 18. Roos WP, Nikolova T, Quiros S, Naumann SC, Kiedron O, Zdzienicka MZ, Kaina B. Brca2/Xrcc2 dependent HR, but not NHEJ, is required for protection against O-6-methylguanine triggered apoptosis, DSBs and chromosomal aberrations by a process leading to SCEs. DNA Repair. 2009; 8:72-86. [PubMed: 18840549]
    • 19. Sprong D, Janssen HDL, Vens C, Begg AC. Resistance of hypoxic cells to ionizing radiation is influenced by homologous recombination status. Int J Radiat Oncol Biol Phys. 2006; 64:562-572. [PubMed: 16343804]
    • 20. Evans JW, Chernikova SB, Kachnic LA, Banath JP, Sordet O, Delahoussaye YM, Treszezamsky A, Chon BH, Feng Z, Gu Y, Wilson WR, Pommier Y, Olive PL, Powell SN, Brown JM. Homologous recombination is the principal pathway for the repair of DNA damage induced by tirapazamine in mammalian cells. Cancer Res. 2008; 68:257-265. [PubMed: 18172318]
    • 21. De Silva IU, McHugh PJ, Clingen PH, Hartley JA. Defining the roles of nucleotide excision repair and recombination in the repair of DNA interstrand cross-links in mammalian cells. Mol Cell Biol. 2000; 20:7980-7990. [PubMed: 11027268]
    • 22. Yanagisawa T, Urade M, Yamamoto Y, Furuyama J. Increased expression of human DNA repair genes, XRCC1, XRCC3 and RAD51, in radioresistant human KB carcinoma cell line N10. Oral Oncol. 1998; 34:524-528. [PubMed: 9930366]
    • 23. Wang ZM, Chen ZP, Xu ZY, Christodoulopoulos G, Bello V, Mohr G, Aloyz R, Panasci LC. In vitro evidence for homologous recombinational repair in resistance to melphalan. J Natl Cancer Inst. 2001; 93:1473-1478. [PubMed: 11584063]
    • 24. Bello VE, Aloyz RS, Christodoulopoulos G, Panasci LC. Homologous recombinational repair visa-vis chlorambucil resistance in chronic lymphocytic leukemia. Biochem Pharmacol. 2002; 63:1585-1588. [PubMed: 12007561]
    • 25. The Breast Cancer Association Consortium. Commonly studied single-nucleotide polymorphisms and breast cancer: Results from the Breast Cancer Association Consortium. J Natl Cancer Inst. 2006; 98:1382-1396. [PubMed: 17018785]
    • 26. Haiman CA, Hsu C, de Bakker PIW, Frasco M, Sheng X, Van Den Berg D, Casagrande JT, Kolonel LN, Le Marchand L, Hankinson SE, Han J, Dunning AM, Pooley KA, Freedman ML, Hunter DJ, Wu AH, Stram DO, Henderson BE. Comprehensive association testing of common genetic variation in DNA repair pathway genes in relationship with breast cancer risk in multiple populations. Hum Mol Genet. 2008; 17:825-834. [PubMed: 18056155]
    • 27. Pooley KA, Baynes C, Driver KE, Tyrer J, Azzato EM, Pharoah PDP, Easton DF, Ponder BAJ, Dunning AM. Common Single-Nucleotide Polymorphisms in DNA Double-Strand Break Repair Genes and Breast Cancer Risk. Cancer Epidemiol Biomarkers Prev. 2008; 17:3482-3489. [PubMed: 19064565]
    • 28. Han JL, Haiman C, Niu TH, Guo Q, Cox DG, Willett WC, Hankinson SE, Hunter DJ. Genetic variation in DNA repair pathway genes and premenopausal breast cancer risk. Breast Cancer Res Treat. 2009; 115:613-622. [PubMed: 18551366]
    • 29. Rafii S, O'Regan P, Xinarianos G, Azmy I, Stephenson T, Reed M, Meuth M, Thacker J, Cox A. A potential role for the XRCC2 R188H polymorphic site in DNA-damage repair and breast cancer. Hum Mol Genet. 2002; 11:1433-1438. [PubMed: 12023985]
    • 30. MacPherson G, Healey CS, Teare MD, Balasubramanian SP, Reed MWR, Pharoah PDP, Ponder BAJ, Meath M, Bhattacharyya NP, Cox A. Association of a common variant of the CASP8 gene with reduced risk of breast cancer. J Natl Cancer Inst. 2004; 96:1866-1869. [PubMed: 15601643]
    • 31. Cannon-Albright LA. Utah family-based analysis: Past, present and future. Hum Hered. 2008; 65:209-220. [PubMed: 18073491]
    • 32. Allen-Brady K, Cannon-Albright LA, Neuhausen SL, Camp NJ. A role for XRCC4 in age at diagnosis and breast cancer risk. Cancer Epidemiol Biomarkers Prev. 2006; 15:1306-1310. [PubMed: 16835328]
    • 34. Collins FS, Brooks LD, Chakravarti A. A DNA polymorphism discovery resource for research on human genetic variation. Genome Res. 1998; 8:1229-1231. [PubMed: 9872978]
    • 35. Livingston RJ, von Niederhausern A, Jegga AG, Crawford DC, Carlson CS, Rieder MJ, Gowrisankar S, Aronow BJ, Weiss RB, Nickerson DA. Pattern of sequence variation across 213 environmental response genes. Genome Res. 2004; 14:1821-1831. [PubMed: 15364900]
    • 36. Kimmel G, Shamir R. GERBIL: Genotype resolution and block identification using likelihood. Proc Natl Acad Sci U S A. 2005; 102:158-162. [PubMed: 15615859]
    • 37. Chapman JM, Cooper JD, Todd JA, Clayton DG. Detecting disease associations due to linkage disequilibrium using haplotype tags: A class of tests and the determinants of statistical power. Hum Hered. 2003; 56:18-31. [PubMed: 14614235]
    • 38. Gonzalez JR, Armengol L, Sole X, Guino E, Mercader JM, Estivill X, Moreno V. SNPassoc: an R package to perform whole genome association studies. Bioinformatics. 2007; 23:644-645. [PubMed: 17267436]
    • 39. Allen-Brady K, Wong J, Camp NJ. PedGenie: an analysis approach for genetic association testing in extended pedigrees and genealogies of arbitrary size. Bmc Bioinformatics. 2006; 7:209. [PubMed: 16620382]
    • 40. Curtin K, Wong J, Allen-Brady K, Camp NJ. PedGenie: meta genetic association testing in mixed family and case-control designs. Bmc Bioinformatics. 2007; 8:448. [PubMed: 18005446]
    • 41. Hunter DJ, Kraft P, Jacobs KB, Cox DG, Yeager M, Hankinson SE, Wacholder S, Wang ZM, Welch R, Hutchinson A, Wang JW, Yu K, Chatterjee N, Orr N, Willett WC, Colditz GA, Ziegler RG, Berg CD, Buys SS, McCarty CA, Feigelson HS, Calle EE, Thun MJ, Hayes RB, Tucker M, Gerhard DS, Fraumeni JF, Hoover RN, Thomas G, Chanock SJ. A genome-wide association study identifies alleles in FGFR2 associated with risk of sporadic postmenopausal breast cancer. Nat Genet. 2007; 39:870-874. [PubMed: 17529973]
    • 42. Higgins JPT, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. Br Med J. 2003; 327:557-560. [PubMed: 12958120]
    • 43. Harris RJ, Bradburn MJ, Deeks JJ, Harbord RM, Altman DG, Sterne JAC. metan: fixed- and random-effects meta-analysis. Stata Journal. 2008; 8:3-28.
    • 44. Azzato EM, Greenberg D, Shah M, Blows F, Driver KE, Caporaso NE, Pharoah PDP. Prevalent cases in observational studies of cancer survival: do they bias hazard ratio estimates? Br J Cancer. 2009; 100:1806-1811. [PubMed: 19401693]
    • 45. Pharoah PDP, Tyrer J, Dunning AM, Easton DF, Ponder BAJ. Association between common variation in 120 candidate genes and breast cancer risk. Plos Genetics. 2007; 3:401-406.
    • 46. Thomas G, Jacobs KB, Kraft P, Yeager M, Wacholder S, Cox DG, Hankinson SE, Hutchinson A, Wang Z, Yu K, Chatterjee N, Garcia-Closas M, Gonzalez-Bosquet J, Prokunina-Olsson L, Orr N, Willett WC, Colditz GA, Ziegler RG, Berg CD, Buys SS, McCarty CA, Feigelson HS, Calle EE, Thun MJ, Diver R, Prentice R, Jackson R, Kooperberg C, Chlebowski R, Lissowska J, Peplonska B, Brinton LA, Sigurdson A, Doody M, Bhatti P, Alexander BH, Buring J, Lee IM, Vatten LJ, Hveem K, Kumle M, Hayes RB, Tucker M, Gerhard DS, Fraumeni JF, Hoover RN, Chanock SJ, Hunter DJ. A multistage genome-wide association study in breast cancer identifies two new risk alleles at 1p11.2 and 14q24.1 (RAD51L1). Nat Genet. 2009; 41:579-584. [PubMed: 19330030]
    • 47. Stratton MR, Rahman N. The emerging landscape of breast cancer susceptibility. Nat Genet. 2008; 40:17-22. [PubMed: 18163131]
    • 49. Bolton EL, Tyrer J, Song H, Ramus SJ, Notaridou M, Jones C, Sher T, Gentry-Maharaj A, Wozniak E, Tsai YY, Weidhaas J, Paik D, Van den Berg DJ, Stram DO, Pearce CL, Wu AH, Brewster W, Anton-Culver H, Ziogas A, Narod SA, Levine DA, Kaye SB, Brown R, Paul J, Flanagan J, Sieh W, McGuire V, Whittemore AS, Campbell I, Gore ME, Lissowska J, Yang HP, Medrek K, Gronwald J, Lubinski J, Jakubowska A, Le ND, Cook LS, Kelemen LE, Brook-Wilson A, Massuger L, Kiemeney LA, Aben KKH, van Altena AM, Houlston R, Tomlinson I, Palmieri RT, Moorman PG, Schildkraut J, Iversen ES, Phelan C, Vierkant RA, Cunningham JM, Goode EL, Fridley BL, Kruger-Kjaer S, Blaeker J, Hogdall E, Hogdall C, Gross J, Karlan BY, Ness RB, Edwards RP, Odunsi K, Moyisch KB, Baker JA, Modugno F, Heikkinenen T, Butzow R, Nevanlinna H, Leminen A, Bogdanova N, Antonenkova N, Doerk T, Hillemanns P, Duurst M, Runnebaum I, Thompson PJ, Carney ME, Goodman MT, Lurie G, Wang-Gohrke S, Hein R,
  • No similar publications.

Share - Bookmark

Funded by projects

Cite this article