Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Publisher: Elsevier
Languages: English
Types: Article
Correcting for tropospheric delays is one of the largest challenges facing the interferometric synthetic aperture radar (InSAR) community. Spatial and temporal variations in temperature, pressure, and relative humidity create tropospheric signals in InSAR data, masking smaller surface displacements due to tectonic or volcanic deformation. Correction methods using weather model data, GNSS and/or spectrometer data have been applied in the past, but are often limited by the spatial and temporal resolution of the auxiliary data. Alternatively a correction can be estimated from the interferometric phase by assuming a linear or a power-law relationship between the phase and topography. Typically the challenge lies in separating deformation from tropospheric phase signals. In this study we performed a statistical comparison of the state-of-the-art tropospheric corrections estimated from the MERIS and MODIS spectrometers, a low and high spatial-resolution weather model (ERA-I and WRF), and both the conventional linear and new power-law empirical methods. Our test-regions include Southern Mexico, Italy, and El Hierro. We find spectrometers give the largest reduction in tropospheric signal, but are limited to cloud-free and daylight acquisitions. We find a ~ 10–20% RMSE increase with increasing cloud cover consistent across methods. None of the other tropospheric correction methods consistently reduced tropospheric signals over different regions and times. We have released a new software package called TRAIN (Toolbox for Reducing Atmospheric InSAR Noise), which includes all these state-of-the-art correction methods. We recommend future developments should aim towards combining the different correction methods in an optimal manner.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Béjar-Pizarro, M., Socquet, A., Armijo, R., Carrizo, D., Genrich, J., & Simons, M. (2013). Andean structural control on interseismic coupling in the North Chile subduction zone. Nature Geoscience, 6, 462-467. http://dx.doi.org/10.1038/NGEO1802.
    • Bekaert, D., Hooper, A., & Wright, T. (2015a). Reassessing the 2006 Guerrero slow slip event, Mexico: implications for large earthquakes in the Guerrero Gap. Journal of Geophysical Research, 120. http://dx.doi.org/10.1002/2014JB011557.
    • Bekaert, D., Hooper, A., & Wright, T. (2015b). A spatially variable power law tropospheric correction technique for InSAR data. Journal of Geophysical Research, 120http://dx.doi. org/10.1002/2014JB011558.
    • Bevis, M., Businger, S., Herring, T., Rocken, C., Anthes, R., & Ware, R. (1992). GPS meteorology: Remote sensing of atmospheric water vapor using the global positioning system. Journal of Geophysical Research, 97, 15,787-15,801. http://dx.doi.org/10.1029/ 92JD01517.
    • Cavalié, O., Pathier, E., Radiguet, M., Vergnolle, M., Cotte, N., Walpersdorf, A. Cotton, F. (2013). Slow slip event in the Mexican subduction zone: evidence of shallower slip in the Guerrero seismic gap for the 2006 event revealed by the joint inversion of InSAR and GPS data. Earth and Planetary Science Letters, 367. http://dx.doi.org/10. 1016/j.epsl.2013.02.020.
    • Cheloni, D., Giuliani, R., D'Anastasio, E., Atzori, S., Walters, R., Bonci, L. Stefanelli, G. (2014). Coseismic and post-seismic slip of the 2009 L'Aquila (central Italy) Mw 6.3 earthquake and implications for seismic potential along the Campotosto fault from joint inversion of high-precision levelling, InSAR and GPS data. Tectonophysics, 622, 168-185. http://dx.doi.org/10.1016/j.tecto.2014.03.009.
    • D'Agostino, N., Giuliani, R., Mattone, M., & Bonci, L. (2001). Active crustal extension in the Central Apennines (Italy) inferred from GPS measurements in the interval 1994- 1999. Geophysical Research Letters, 28, 2121-2124. http://dx.doi.org/10.1029/ 2000GL012462.
    • Davis, J., Herring, T., Shapiro, I., Rogers, A., & Elgered, G. (1985). Geodesy by radio interferometry: effects of atmospheric modeling errors on estimates of baseline length. Radio Science, 20, 1593-1607. http://dx.doi.org/10.1029/RS020i006p01593.
    • Dee, D.P., Uppala, S.M., Simmons, A.J., Berrisford, P., Poli, P., Kobayashi, S.Vitart, F. (2011). The ERA-interim reanalysis: configuration and performance of the data assimilation system. Quarterly Journal of the Royal Meteorological Society, 137, 553-597. http:// dx.doi.org/10.1002/qj.828.
    • Doin, M., Lasserre, C., Peltzer, G., Cavalié, O., & Doubre, C. (2009). Corrections of stratified tropospheric delays in SAR interferometry: validation with global atmospheric models. Journal of Applied Geophysics, 69, 35-50. http://dx.doi.org/10.1016/j. jappgeo.2009.03.010.
    • Elliott, J., Biggs, J., Parsons, B., & Wright, T. (2008). InSAR slip rate determination on the Altyn Tagh Fault, northen Tibet, in the presence of topographically correlated atmopsheric delays. Geophysical Research Letters, 35. http://dx.doi.org/10.1029/ 2008GL033659.
    • ESA (2011). MERIS Level 2 Detailed Processing Model. Technical Report PO-TN-MEL-GS0006. European Space Agency. Issue 8, Rev 0B.
    • Farr, T., Rosen, P., Caro, E., Crippen, R., Duren, R., Hensley, S. Alsdorf, D. (2007). The Shuttle Radar Topography Mission. Reviews of Geophysics, 45. http://dx.doi.org/10.1029/ 2005RG000183.
    • Fournier, T., Pritchard, M., & Finnegan, N. (2011). Accounting for atmospheric delays in InSAR data in a search for long-wavelength deformation in South America. IEEE Transactions on Geoscience and Remote Sensing, 49, 3856-3867. http://dx.doi.org/10. 1109/TGRS.2011.2139217.
    • Gao, B., & Kaufman, Y.J. (2003). Water vapor retrievals using Moderate Resolution Imaging Spectroradiometer (MODIS) near-infrared channels. Journal of Geophysical Research, 108. http://dx.doi.org/10.1029/2002JD003023.
    • González, P.J., Samsonov, S.V., Pepe, S., Tiampo, K.F., Tizzani, P., Casu, F. Sansosti, E. (2013). Magma storage and migration associated with the 2011-2012 El Hierro eruption: Implications for crustal magmatic systems at oceanic island volcanoes. Journal of Geophysical Research, 118, 4361-4377. http://dx.doi.org/10.1002/jgrb.50289.
    • Gray, A.L., Mattar, K.E., & Sofko, G. (2000). Influence of ionospheric electron density fluctuations on satellite radar interferometry. Geophysical Research Letters, 27, 1451-1454. http://dx.doi.org/10.1029/2000GL000016.
    • Hanssen, R.F. (2001). Remote Sensing and Digital Image Processing. In F. van der Meer (Ed.), Radar Interferometry: Data interpretation and error analysis. Earth and Environmental Science, vol. 2, . Dordrecht, The Netherlands: Kluwer Academic Plublishers.
    • Hooper, A., Bekaert, D., Spaans, K., & Arikan, M. (2012). Recent advances in SAR interferometry time series analysis for measuring crustal deformation. Tectonophysics, 514-517, 1-13. http://dx.doi.org/10.1016/j.tecto.2011.10.013 (URL: http://www.sciencedirect. com/science/article/pii/S0040195111004343).
    • Hooper, A., Pietrzak, J., Simons, W., Cui, H., Riva, R., Naeije, M. Socquet, A. (2013). Importance of horizontal seafloor motion on tsunami height for the 2011 Mw = 9.0 Tohoku-Oki earthquake. Earth and Planetary Science Letters, 361, 469-479. http://dx. doi.org/10.1016/j.epsl.2012.11.013.
    • Hooper, A., Segall, P., & Zebker, H. (2007). Persistent scatterer interferometric synthetic aperture radar for crustal deformation analysis, with application to Volcán Alcedo, Galápagos. Journal of Geophysical Research, 112. http://dx.doi.org/10.1029/2006JB004763.
    • Jolivet, R., Agram, P.S., Lin, N., Simons, M., Doin, M., Peltzer, G., & Li, Z. (2014). Improving InSAR geodesy using Global Atmospheric Models. Journal of Geophysical Research, 119, 2324-2341. http://dx.doi.org/10.1002/2013JB010588.
    • Jolivet, R., Grandin, R., Lasserre, C., Doin, M., & Peltzer, G. (2011). Systematic InSAR tropospheric phase delay corrections from global meteorological reanalysis data. Geophysical Research Letters, 38. http://dx.doi.org/10.1029/2011GL048757.
    • Jolivet, R., Lasserre, C., Doin, M., Guillaso, S., Peltzer, G., Dailu, R. Xu, X. (2012). Shallow creep on the Haiyuan Fault (Gansu, China) revealed by SAR Interferometry. Journal of Geophysical Research, 117. http://dx.doi.org/10.1029/2011JB008732.
    • Kampes, B., Hanssen, R., & Perski, Z. (2003). Radar interferometry with public domain tools. Proceedings Fringe 2003 (pp. 6).
    • Li, Z., Fielding, E., & Cross, P. (2009a). Integration of InSAR time-series analysis and watervapor correction for mapping Postseismic motion after the 2003 Bam (Iran) earthquake. IEEE Transactions on Geoscience and Remote Sensing, 47, 3220-3230. http:// dx.doi.org/10.1109/TGRS.2009.2019125.
    • Li, Z., Fielding, E., Cross, P., & Muller, J. (2006b). Interferometric synthetic aperture radar atmospheric correction: GPS topography-dependent turbulence model. Journal of Geophysical Research, 111. http://dx.doi.org/10.1029/2005JB003711.
    • Li, Z., Fielding, E., Cross, P., & Preusker, R. (2009b). Advanced InSAR atmospheric correction: MERIS/MODIS combination and stacked water vapour models. International Journal of Remote Sensing, 30, 3343-3363. http://dx.doi.org/10.1080/01431160802562172.
    • Li, Z., Muller, J., & Cross, P. (2003). Comparison of precipitable water vapor derived from radiosonde, GPS, and Moderate-Resolution Imaging Spectroradiometer measurements. Journal of Geophysical Research, 108. http://dx.doi.org/10.1029/2003JD003372.
    • Li, Z., Muller, J., Cross, P., Albert, P., Fischer, J., & Bennartz, R. (2006a). Assessment of the potential of MERIS near - infrared water vapour products to correct ASAR interferometric measurements. International Journal of Remote Sensing, 27, 349-365. http://dx. doi.org/10.1080/01431160500307342.
    • Li, Z., Muller, J., Cross, P., & Fielding, E. (2005). Interferometric synthetic aperture radar (InSAR) atmospheric correction: GPS, Moderate Resolution Imaging Spectroradiometer (MODIS), and InSAR integration. Journal of Geophysical Research, 110. http://dx.doi.org/ 10.1029/2004JB003446.
    • Lin, Y., Simons, M., Hetland, E., Muse, P., & DiCaprio, C. (2010). A multiscale approach to estimating topographically correlated propagation delays in radar interferograms. Geochemistry, Geophysics, Geosystems, 11.
    • Liu, S., Hanssen, R., & Mika, A. (2009). On the value of high-resolution weather models for atmospheric mitigation in SAR interferometry. Geoscience and Remote Sensing Symposium, 2009 IEEE International, IGARSS 2009 (pp. II-749-II-752). http://dx.doi.org/10. 1109/IGARSS.2009.5418199.
    • Löfgren, J., Björndahl, F., Moore, A., Webb, F., Fielding, E., & Fishbein, E. (2010). Tropospheric correction for InSAR using interpolated ECMWF data and GPS Zenith Total Delay from the Southern California Integrated GPS Network. Geoscience and Remote Sensing Symposium (IGARSS), 2010 IEEE International (pp. 4503-4506). http://dx.doi. org/10.1109/IGARSS.2010.5649888.
    • Marinkovic, P., & Larsen, Y. (2015). On Resolving the Local Oscillator Drift Induced Phase Ramps in ASAR and ERS1/2 Interferometric Data - The Final Solution, in: Fringe 2015 workshop (ESA SP-731).
    • Markowski, P., & Richardson, Y. (Eds.). (2010). Mesoscale Meteorology in Midlatitudes (Edition 1 ). Southern Gate, Ghichester, West Succex, UK: Wiley-Blackwell.
    • Michalakes, J., Dudhia, J., Gill, D., Henderson, T., Klemp, J., Skamarock, W., & Wang, W. (2004). The weather reseach and forecast model: software architecture and performance. In G. Mozdzynski (Ed.), Proceedings of the 11th ECMWF Workshop on the Use of High Performance Computing in Meteorology. Reading: United Kingdom.
    • Niell, A., Coster, A., Solheim, F., Mendes, V., Toor, P., Langley, R., & Upham, C. (2001). Comparison of measurements of atmospheric wet delay by radiosonde, water vapor radiometer, GPS, and VLBI. Journal of Atmospheric and Oceanic Technology, 18, 830-850. http://dx.doi.org/10.1175/1520-0426(2001)018b0830:COMOAWN2.0.CO;2.
    • Onn, F., & Zebker, H. (2006). Correction for interferometric synthetic aperture radar atmospheric phase artifacts using time series of zenith wet delay observations from a GPS network. Journal of Geophysical Research, 111. http://dx.doi.org/10.1029/ 2005JB004012.
    • Puysseégur, B., Michel, R., & Avouac, J. (2007). Tropospheric phase delay in interferometric synthetic aperture radar estimated from meteorological model and multispectral imagery. Journal of Geophysical Research, 112. http://dx.doi.org/10.1029/2006JB004352.
    • Rosen, P., Henley, S., Peltzer, G., & Simons, M. (2004). Updated Repeat Orbit Interferometry Package Released. Eos, Transactions of the American Geophysical Union, 85, 47-47. http://dx.doi.org/10.1029/2004EO050004.
    • Saha, S., Moorthi, S., Pan, H.L., Wu, X., Wang, J., Nadiga, S. Goldberg, M. (2010). NCEP Climate Forecast System Reanalysis (CFSR) 6-hourly Products, January 1979 to December 2010. http://dx.doi.org/10.5065/D69K487J [Accessed Dec 2013].
    • Smith, E., & Weintraub, S. (1953). The constants in the equation for atmospheric refractive index at radio frequencies. Proceedings of the IRE, 41, 1035-1037. http://dx.doi.org/10. 1109/JRPROC.1953.274297.
    • Unidata, University Corporation for Atmospheric Research and National Centers for Environmental Prediction, National Weather Service, NOAA, U.S. Department of Commerce, & European Centre for Medium-Range Weather Forecasts (2003). Historical Unidata Internet Data Distribution (IDD) Gridded Model Data, December 2002-current. URL: http://rda.ucar.edu/datasets/ds335.0/. ([Accessed Dec 2013]).
    • Wadge, G., Webley, P., James, I., Bingley, R., Dodson, A., Waugh, S. Clarke, P. (2002). Atmospheric models, GPS and InSAR measurements of the tropospheric water vapour field over Mount Etna. Geophysical Research Letters, 29. http://dx.doi.org/10.1029/ 2002GL015159.
    • Walters, R., Elliott, J., Li, Z., & Parsons, B. (2013). Rapid strain accumulation on the Ashkabad fault (Turkmenistan) from atmosphere-corrected InSAR. Geophysical Research Letters, 118, 3674-3690. http://dx.doi.org/10.1002/jgrb.50236.
    • Walters, R., Parsons, B., & Wright, T. (2014). Constraining crustal velocity fields with InSAR for Eastern Turkey: limits to the block-like behaviour of Eastern Anatolia. Journal of Geophysical Research, 119, 5215-5234. http://dx.doi.org/10.1002/ 2013JB010909.
    • Walters, R.J., Elliott, J.R., D'Agostino, N., England, P.C., Hunstad, I., Jackson, J.A. Roberts, G. (2009). The 2009 L'Aquila earthquake (central Italy): A source mechanism and implications for seismic hazard. Geophysical Research Letters, 36. http://dx.doi.org/10.1029/ 2009GL039337.
    • Wessel, P., & Smith, W. (1991). Free Software helps Map and Display Data. Eos, Transactions of the American Geophysical Union, 72, 445-446. http://dx.doi.org/10. 1029/90EO00319.
    • Wicks, C., Dzurisin, D., Ingebritsen, S., Thatcher, W., Lu, Z., & Iverson, J. (2002). Magmatic activity beneath the quiescent Three Sisters volcanic center, central Oregon Cascade Range, USA. Geophysical Research Letters, 29, 26-1-26-4. http://dx.doi.org/10.1029/ 2001GL014205.
    • Williams, S., Bock, Y., & Fang, P. (1998). Integrated satellite interferometry: tropospheric noise, GPS estimates and implications for interferometric synthetic aperture radar products. Journal of Geophysical Research, 103, 27051-27067. http://dx.doi.org/10. 1029/98JB02794.
  • Inferred research data

    The results below are discovered through our pilot algorithms. Let us know how we are doing!

    Title Trust
  • No similar publications.

Share - Bookmark

Cite this article