LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Publisher: American Geophysical Union
Languages: English
Types: Article
Subjects:

Classified by OpenAIRE into

arxiv: Astrophysics::Earth and Planetary Astrophysics
The downward fluxes of Fe and Na, measured near the mesopause with the University of Colorado lidars near Boulder, and a chemical ablation model developed at the University of Leeds, are used to constrain the velocity/mass distribution of the meteoroids entering the atmosphere and to derive an improved estimate for the global influx of cosmic dust. We find that the particles responsible for injecting a large fraction of the ablated material into the Earth's upper atmosphere enter at relatively slow speeds and originate primarily from the Jupiter Family of Comets. The global mean Na influx is 17,200 ± 2800 atoms/cm2/s, which equals 298 ± 47 kg/d for the global input of Na vapor and 150 ± 38 t/d for the global influx of cosmic dust. The global mean Fe influx is 102,000 ± 18,000 atoms/cm2/s, which equals 4.29 ± 0.75 t/d for the global input of Fe vapor.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Baggaley, W. J. (2002), Radar observations, in Meteors in the Earth's Atmosphere, edited by E. Murad and I. P. Williams, pp. 123-148, Cambridge Univ. Press, Cambridge.
    • Dhomse, S. S., R. W. Saunders, W. Tian, M. P. Chipperfield, and J. M. C. Plane (2013), Plutonium-238 observations as a test of modeled transport and surface deposition of meteoric smoke particles, Geophys. Res. Lett., 40, 4454-4458, doi:10.1002/grl.50840.
    • Feng, W., D. R. Marsh, M. P. Chipperfield, D. Janches, J. Höffner, F. Yi, and J. M. C. Plane (2013), A global atmospheric model of meteoric iron, J. Geophys. Res. Atmos., 118, 9456-9474, doi:10.1002/jgrd.50708.
    • Fentzke, J. T., and D. Janches (2008), A semi-empirical model of the contribution from sporadic meteoroid sources on the meteor input function in the MLT observed at Arecibo, J. Geophys. Res., 113, A03304, doi:10.1029/2007JA012531.
    • Gardner, C. S., and A. Z. Liu (2007), Seasonal variations of the vertical fluxes of heat and horizontal momentum in the mesopause region at Starfire Optical Range, New Mexico, J. Geophys. Res., 112, D09113, doi:10.1029/2005JD006179.
    • Gardner, C. S., and A. Z. Liu (2010), Wave-induced transport of atmospheric constituents and its effect on the mesospheric Na layer, J. Geophys. Res., 115, D20302, doi:10.1029/2010JD014140.
    • Gardner, C. S., A. Z. Liu, D. R. Marsh, W. Feng, and J. M. C. Plane (2014), Inferring the global cosmic dust influx to the Earth's atmosphere from lidar observations of the vertical flux of mesospheric Na, J. Geophys. Res. Space Physics, 119, 7870-7879, doi:10.1002/2014JA020383.
    • Huang, W., X. Chu, C. S. Gardner, Z. Wang, W. Fong, J. A. Smith, and B. R. Roberts (2013), Simultaneous, common-volume lidar observations and theoretical studies of correlations among Fe/Na layers and temperatures in the mesosphere and lower thermosphere at Boulder Table Mountain (40°N, 105°W), Colorado, J. Geophys. Res. Atmos., 118, 8748-8759, doi:10.1002/jgrd.50670.
    • Janches, D., C. J. Heinselman, J. L. Chau, A. Chandran, and R. Woodman (2006), Modeling the global micrometeor input function in the upper atmosphere observed by high power and large aperture radars, J. Geophys. Res., 111, A07317, doi:10.1029/2006JA011628.
    • Janches, D., S. Close, and J. T. Fentzke (2008), A comparison of detection sensitivity between ALTAIR and Arecibo meteor observations: Can high power and large aperture radars detect low velocity meteor head-echoes, Icarus, 193(1), 105-111, doi:10.1016/j.icarus.2007.08.022.
    • Janches, D., L. P. Dyrud, S. L. Broadley, and J. M. C. Plane (2009), First observation of micrometeoroid differential ablation in the atmosphere, Geophys. Res. Lett., 36, L06101, doi:10.1029/2009GL037389.
    • Janches, D., J. M. C. Plane, D. Nesvorný, W. Feng, D. Vokrouhlický, and M. J. Nichols (2014), Radar detectability studies of slow and small Zodiacal Dust Cloud particles: I. The case of Arecibo 430 MHz meteor head echo observations, Astrophys. J., 796(41), 20, doi:10.1088/0004-637X/796/1/41.
  • No related research data.
  • No similar publications.

Share - Bookmark

Funded by projects

  • NSF | Collaborative Research: Lid...
  • NSF | Collaborative Research: Lid...
  • NSF | Lidar Investigation of Midd...
  • NSF | Collaborative Research: Obs...
  • NSF | Collaborative Research: Obs...
  • NSF | Collaborative Research: A C...
  • EC | CODITA

Cite this article