Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Publisher: The Paleontological Society
Languages: English
Types: Part of book or chapter of book
Subjects: sub-04
The late Neoproterozoic witnessed a revolution in the history of life: the transition from a microbial world to the one known today. The enigmatic organisms of the Ediacaran hold the key to understanding the early evolution of metazoans and their ecology, and thus the basis of Phanerozoic life. Crucial to interpreting the information they divulge is a thorough understanding of their taphonomy: what is preserved, how it is preserved, and also what is not preserved. Fortunately, this Period is also recognized for its abundance of soft-tissue preservation, which is viewed through a wide variety of taphonomic windows. Some of these, such as pyritization and carbonaceous compression, are also present throughout the Phanerozoic, but the abundance and variety of moldic preservation of body fossils in siliciclastic settings is unique to the Ediacaran. In rare cases, one organism is preserved in several preservational styles which, in conjunction with an increased understanding of the taphonomic processes involved in each style, allow confident interpretations of aspects of the biology and ecology of the organisms preserved. Several groundbreaking advances in this field have been made since the 1990s, and have paved the way for increasingly thorough analyses and elegant interpretations.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • ANDERSON, E. P., J. D. SCHIFFBAUER, AND S. XIAO. 2011. Taphonomic study of Ediacaran organicwalled fossils confirms the importance of clay minerals and pyrite in Burgess Shale-type preservation. Geology, 39:643-646. doi: 10.1130/ G31969.1.
    • ANTCLIFFE, J. B., AND M. D. BRASIER. 2007. Charnia and sea pens are poles apart. Journal of the G e o l o g i c a l S o c i e t y , 1 6 4 : 4 9 - 5 1 . d o i : 10.1144/0016-76492006-080.
    • BILLINGS, E. 1872. Fossils in Huronian rocks. Canadian Naturalist and Quarterly Journal of Science, 6:478.
    • BOYNTON, H. E., AND T. D. FORD. 1995. Ediacaran f o s s i l s f r o m t h e P r e c a m b r i a n ( C h a r n i a n Supergroup) of Charnwood Forest, Leicestershire, England. Mercian Geologist, 13:165-182.
    • BOYNTON, H. E., AND T. D. FORD. 1979. Pseudovendia charnwoodensis-a new Precambrian arthropod from Charnwood Forest, Leicestershire. Mercian Geologist, 7:175-177.
    • BRASIER, M. D., J. B. ANTCLIFFE, AND A. G. LIU. 2012. The architecture of Ediacaran Fronds. Palaeontology, 55:1105-1124. doi: 10.1111/j. 1475-4983.2012.01164.x.
    • BRASIER, M. D., A. G. LIU, L. MENON, J. J. MATTHEWS, D. MCILROY, AND D. WACEY. 2013. Explaining the exceptional preservation of Ediacaran rangeomorphs from Spaniard's Bay, Newfoundland: A hydraulic model. Precambrian Research, 231:122-135. doi: 10.1016/j.precamres. 2013.03.013.
    • BRIGGS, D. E. G. 2003. The role of decay and mineralization in the preservation of soft-bodied fossils. Annual Review of Earth and Planetary Sciences, 31:275-301. doi: 10.1146/annurev.earth. 31.100901.144746.
    • BRUTON, D. L. 1991. Beach and laboratory experiments with the jellyfish Aurelia and remarks on some fossil “'medusoid'” traces, p. 125-129. In A. M. Simonetta, and S. Conway Morris (eds.), The Early Evolution of Metazoa and the Significance of Problematic Taxa, Cambridge University Press, Cambridge.
    • BUTTERFIELD, N. J., U. BALTHASAR, AND L. A. WILSON. 2007. Fossil diagenesis in the Burgess Shale. Palaeontology, 50:537-543. doi: 10.1111/j. 1475-4983.2007.00656.x.
    • CAI, Y., J. D. SCHIFFBAUER, H. HUA, AND S. XIAO. 2012. Preservational modes in the Ediacaran G a o j i a s h a n L a g e r s t ä t t e : P y r i t i z a t i o n , a l u m i n o s i l i c i f i c a t i o n , a n d c a r b o n a c e o u s c o m p r e s s i o n . P a l a e o g e o g r a p h y , Palaeoclimatology, Palaeoecology, 326-328:109- 117. doi: 10.1016/j.palaeo.2012.02.009.
    • CALLOW, R. H. T., AND M. D. BRASIER. 2009a. A solution to Darwin's dilemma of 1859: exceptional preservation in Salter's material from the late Ediacaran Longmyndian Supergroup, England. Journal of the Geological Society, 166:1-4. doi: 10.1144/0016-76492008-095.
    • CALLOW, R. H. T., AND M. D. BRASIER. 2009b. Remarkable preservation of microbial mats in Neoproterozoic siliciclastic settings: Implications for Ediacaran taphonomic models. Earth-Science Reviews, 96:207-219. doi: 10.1016/j.earscirev. 2009.07.002.
    • CANFIELD, D. E., S. W. POULTON, A. H. KNOLL, G. M. NARBONNE, G. ROSS, T. GOLDBERG, AND H. STRAUSS. 2008. Ferruginous conditions dominated later Neoproterozoic deep-water chemistry. Science, 321:949-952. doi: 10.2307/20144603.
    • CHEN, Z., C. ZHOU, M. MEYER, K. XIANG, J. D. SCHIFFBAUER, X. YUAN, AND S. XIAO. 2013. Trace fossil evidence for Ediacaran bilaterian animals with complex behaviors. Precambrian Research, 224:690-701.
    • CLAPHAM, M. E., AND G. M. NARBONNE. 2002. Ediacaran epifaunal tiering. Geology, 30:627-630.
    • CLAPHAM, M. E., G. M. NARBONNE, AND J. G. GEHLING. 2003. Paleoecology of the oldest known animal communities: Ediacaran assemblages at Mistaken Point, Newfoundland. Paleobiology, 29:527-544.
    • DARROCH, S. A. F., M. LAFLAMME, AND M. E. CLAPHAM. 2013. Population structure of the oldest known macroscopic communities from Mistaken Point, Newfoundland. Paleobiology, 39:591-608. doi: 10.1666/12051.
    • D ARROCH , S . A . F. , M . L AFLAMME , J . D . SCHIFFBAUER, AND D. E. G. BRIGGS. 2012. Experimental formation of a microbial death mask. PALAIOS, 27:293-303. doi: 10.2110/palo. 2011.p11-059r.
    • DROSER, M. L., J. G. GEHLING, AND S. R. JENSEN. 2006. Assemblage palaeoecology of the Ediacara biota: The unabridged edition? Palaeogeography, Palaeoclimatology, Palaeoecology, 232:131-147. doi: 10.1016/j.palaeo.2005.12.015.
    • DZIK, J. 2003. Anatomical information content in the Ediacaran fossils and their possible zoological affinities. Integrative and Comparative Biology, 43:114-126. doi: 10.2307/3884846.
    • DZIK, J. 2002. Possible ctenophoran affinities of the Precambrian “sea-pen” Rangea. Journal of Morphology, 252:315-334. doi: 10.1002/jmor. 1108.
    • ERWIN, D. H., M. LAFLAMME, S. M. TWEEDT, E. A. SPERLING, D. PISANI, AND K. J. PETERSON. 2011. The Cambrian conundrum: early divergence and later ecological success in the early history of animals. Science, 334:1091-1097. doi: 10.1126/ science.1206375.
    • FARRELL, Ú. C. 2014. Pyritization of soft tissues in the fossil record: an overview, p. 35-57. In M. Laflamme, J. D. Schiffbauer, and S. A. F. Darroch (eds.), Reading and Writing of the Fossil Record: P r e s e r v a t i o n a l P a t h w a y s t o E x c e p t i o n a l Fossilization. The Paleontological Society Papers 20. Yale Press, New Haven, Ct.
    • FEDONKIN, M. A., J. G. GEHLING, K. GREY, G. M. NARBONNE, AND P. VICKERS-RICH. 2007. The Rise of Animals: Evolution and Diversification of the Kingdom Animalia. John Hopkins University Press, Baltimore, MD.
    • FEDONKIN, M. A., AND B. M. WAGGONER. 1997. The Late Precambrian fossil Kimberella is a mollusclike bilaterian organism. Nature, 388:868-871.
    • FLUDE, L. I., AND G. M. NARBONNE. 2008. Taphonomy and ontogeny of a multibranched Ediacaran fossil: Bradgatia from the Avalon Peninsula of Newfoundland. Canadian Journal of Earth Sciences, 45:1095-1109. doi: 10.1139/ E08-057.
    • FORD, T. D. 1958. Pre-Cambrian Fossils from Charnwood Forest. Proceedings of the Yorkshire Geological and Polytechnic Society, 31:211-217. doi: 10.1144/pygs.31.3.211.
    • GAINES, R. R., M. J. KENNEDY, AND M. L. DROSER. 2005. A new hypothesis for organic preservation of Burgess Shale taxa in the middle Cambrian Wheeler Formation, House Range, Utah. P a l a e o g e o g r a p h y , P a l a e o c l i m a t o l o g y , Palaeoecology, 220:193-205. doi: 10.1016/ j.palaeo.2004.07.034.
    • GEHLING, J. G. 1999. Microbial mats in terminal Proterozoic siliciclastics: Ediacaran death masks. PALAIOS, 14:40-57. doi: 10.2307/3515360.
    • GEHLING, J. G. 1991. The case for Ediacaran fossil roots to the metazoan tree. Geological Society of India Memoir, 20:181-224.
    • GEHLING, J. G., AND M. L. DROSER. 2013. How well do fossil assemblages of the Ediacara Biota tell time? Geology, 41:447-450. doi: 10.1130/ G33881.1.
    • GEHLING, J. G., M. L. DROSER, S. R. JENSEN, AND B. N. RUNNEGAR. 2005. Ediacaran organisms: relating form and function, p. 43-67. In D. E. G. Briggs (ed.), Evolving Form and Function: Fossils and Development: Proceedings of a Symposium Honoring Adolf Seilacher for his Contributions to Paleontology, in Celebration of His 80th Birthday. Peabody Museum of Natural History, Yale University, New Haven.
    • GEHLING, J. G., G. M. NARBONNE, AND M. M. ANDERSON. 2000. The first named Ediacaran body fossil, Aspidella terranovica. Palaeontology, 43:427-456. doi:10.1111/j.0031-0239.2000.00134. x.
    • GLAESSNER, M. F. 1979. Precambrian, p. A79-118. In R. A. Robinson and C. Teichert (eds.), Treatise on Invertebrate Paleontology, Part A. Geological Society of America and University Kansas Press, Boulder, CO and Lawrence, KS.
    • GLAESSNER, M. F., AND M. WADE. 1966. The Late Precambrian fossils from Ediacara, South Australia. Palaeontology, 9:599-628.
    • GLASS, J. B., R. P. AXLER, S. CHANDRA, AND C. R. GOLDMAN. 2012. Molybdenum limitation of microbial nitrogen assimilation in aquatic ecosystems and pure cultures. Frontiers in Microbiology, 3:331. doi: 10.3389/fmicb. 2012.00331.
    • GRANT, S. W. 1990. Shell structure and distribution of Cloudina, a potential index fossil for the terminal Proterozoic. American Journal of Science, 290-A: 261-294.
    • GRAZHDANKIN, D. 2004. Patterns of distribution in the Ediacaran biotas: facies versus biogeography and evolution. Paleobiology, 30:203-221.
    • GRAZHDANKIN, D. V., U. BALTHASAR, K. E. NAGOVITSIN, AND B. B. KOCHNEV. 2008. Carbonate-hosted Avalon-type fossils in Arctic Siberia. Geology, 36:803-806. doi: 10.1130/ G24946A.1.
    • GRAZHDANKIN, D., AND G. GERDES. 2007. Ediacaran microbial colonies. Lethaia, 40:201-210. doi: 10.1111/j.1502-3931.2007.00025.x.
    • GROTZINGER, J. P., W. A. WATTERS, AND A. H. KNOLL. 2000. Calcified metazoans in thrombolitestromatolite reefs of the terminal Proterozoic Nama Group, Namibia. Paleobiology, 26:334-359. doi: 10.2307/2666114.
    • HUA, H., B. R. PRATT, AND L. ZHANG. 2003. Borings in Cloudina shells: complex predator-prey dynamics in the terminal Neoproterozoic. PALAIOS, 18:454-459.
    • HOFMANN, H. J., J. HILL, AND A. F. KING. 1979. Late P r e c a m b r i a n m i c r o f o s s i l s , s o u t h e a s t e r n Newfoundland. Geological Survey of Canada Current Research Part B, 79-1B:83-98.
    • KNOLL, A. H., M. R. WALTER, G. M. NARBONNE, AND N. CHRISTIE-BLICK. 2004. A new Period for the geologic time scale. Science, 305:621-622. doi: 10.1126/science.1098803.
    • LAFLAMME, M., S. A. F. DARROCH, S. M. TWEEDT, K. J. PETERSON, AND D. H. ERWIN. 2013. The end of the Ediacara biota: Extinction, biotic replacement, or Cheshire Cat? Gondwana Research, 23:558- 573. doi:10.1016/j.gr.2012.11.004.
    • LAFLAMME, M., AND G. M. NARBONNE. 2008. E d i a c a r a n f r o n d s . P a l a e o g e o g r a p h y , Palaeoclimatology, Palaeoecology, 258:162-179. doi: 10.1016/j.palaeo.2007.05.020.
    • LAFLAMME, M., G. M. NARBONNE, AND M. M. ANDERSON. 2004. Morphometric analysis of the Ediacaran frond Charniodiscus from the Mistaken Point Formation, Newfoundland. Journal of Paleontology, 78:827-837.
    • LAFLAMME, M., G. M. NARBONNE, C. GREENTREE, AND M. M. ANDERSON. 2007. Morphology and taphonomy of an Ediacaran frond: Charnia from the Avalon Peninsula of Newfoundland. G e o l o g i c a l S o c i e t y o f L o n d o n S p e c i a l Publications, 286:237-257. doi:10.1144/SP286.17.
    • LAFLAMME, M., J. D. SCHIFFBAUER, AND G. M. NARBONNE. 2012. Deep-water microbially induced sedimentary structures (MISS) in deep time, in the Ediacaran fossil Ivesheadia, p. 111- 123. In N. Noffke and H. Chaftez (eds.), Microbial Mats in Siliciclastic Depositional Systems Through Time. SEPM Special Publication 101, SEPM, Tulsa, OK.
    • LAFLAMME, M., J. D. SCHIFFBAUER, G. M. NARBONNE, AND D. E. G. BRIGGS. 2011. Microbial biofilms and the preservation of the Ediacara biota. Lethaia, 44:203-213. doi:10.1111/ j.1502-3931.2010. 00235.x.
    • LAFLAMME, M., S. XIAO, AND M. KOWALEWSKI. 2009. Osmotrophy in modular Ediacara organisms. Proceedings of the National Academy of Sciences of the United States of America, 106:14438- 14443. doi:10.1073/pnas.0904836106.
    • LAN, Z.-W., AND Z.-Q. CHEN. 2012. Exceptionally preserved microbially induced sedimentary structures from the Ediacaran post-glacial successions in the Kimberley region, northwestern Australia. Precambrian Research, 200-203:1-25,. doi: 10.1016/j.precamres.2012.01.006.
    • LIU, A. G., D. MCILROY, J. B. ANTCLIFFE, AND M. D. BRASIER. 2011. Effaced preservation in the Ediacara biota and its implications for the early macrofossil record. Palaeontology, 54: 607-630. doi:10.1111/j.1475-4983.2010.01024.x.
    • LIU, A. G., D. MCLLROY, AND M. D. BRASIER. 2010. First evidence for locomotion in the Ediacara biota from the 565 Ma Mistaken Point Formation, Newfoundland. Geology, 38:123-126. doi: 10.1130/G30368.1.
    • LIU, A. G., D. MCILROY, J. J. MATTHEWS, AND M. D. BRASIER. 2012. A new assemblage of juvenile Ediacaran fronds from the Drook Formation, Newfoundland. Journal of the Geological Society, 169:395-403. doi: 10.1144/0016-76492011-094.
    • LIU, A. G., D. MCILROY, J. J. MATTHEWS, AND M. D. BRASIER. 2013. Exploring an Ediacaran “nursery”: growth, ecology and evolution in a rangeomorph palaeocommunity. Geology Today, 29:23-26. doi: 10.1111/j.1365-2451.2013.00860.x.
    • LOCATELLI, E. R. 2014. The exceptional preservation of plant fossils: a review of taphonomic pathways and biases in the fossil record, p. 237 -257. In M. Laflamme, J. D. Schiffbauer, and S. A. F. Darroch (eds.), Reading and Writing of the Fossil Record: P r e s e r v a t i o n a l P a t h w a y s t o E x c e p t i o n a l Fossilization. The Paleontological Society Papers 20. Yale Press, New Haven, Ct.
    • MACGABHANN, B. A. 2007. Discoidal fossils of the E d i a c a r a n b i o t a : a r e v i e w o f c u r r e n t understanding. Geological Society of London, Special Publications, 286:297-313. doi: 10.1144/ SP286.21.
    • MACGABHANN, B. A. 2014. There is no such thing as the “Ediacara Biota.” Geoscience Frontiers, 5:53- 62. doi: 10.1016/j.gsf.2013.08.001.
    • MACGABHANN, B. A., AND J. MURRAY. 2010. Nonmineralised discoidal fossils from the Ordovician Bardahessiagh Formation, Co. Tyrone, Ireland. Irish Journal of Earth Sciences, 28:1-12. doi: 10.3318/IJES.2010.28.1.
    • MACGABHANN, B. A., J. MURRAY, AND C. NICHOLAS. 2007. Ediacaria booleyi: weeded from the Garden of Ediacara? Geological Society of London Special Publications, 286:277-295. doi: 10.1144/ SP286.20.
    • MAPSTONE, N. B., AND D. MCILROY. 2006. Ediacaran fossil preservation: Taphonomy and diagenesis of a discoid biota from the Amadeus Basin, central Australia. Precambrian Research, 149:126-148. doi: 10.1016/j.precamres.2006.05.007.
    • MCILROY, D., M. D. BRASIER, AND A. S. LANG. 2009. Smothering of microbial mats by macrobiota: implications for the Ediacara biota. Journal of the Geological Society, 166:1117-1121. doi: 10.1144/0016-76492009-073.
    • MEYER, M., D. ELLIOTT, J. D. SCHIFFBAUER, M. HALL, K. H. HOFFMAN, G. SCHNEIDER, P. VICKERS-RICH, AND S. XIAO. 2014a. Taphonomy of the Ediacaran fossil Pteridinium simplex preserved three-dimensionally in mass flow deposits, Nama Group, Namibia. Journal of Paleontology, 88:240-252.
    • MEYER, M., D. ELLIOTT, A. D. WOOD, N. F. POLYS, M. COLBERT, J. A. MAISANO, P. VICKERS-RICH, M. HALL, K. H. HOFFMAN, G. SCHNEIDER, AND S. XIAO. 2014b. Three-dimensional microCT analysis of the Ediacara fossil Pteridinium simplex sheds new light on its ecology and phylogenetic affinity. Precambrian Research, 249:79-87. doi: 10.1016/j.precamres.2014.04.013.
    • MEYER, M., J. D. SCHIFFBAUER, S. XIAO, Y. CAI, AND H. HUA. 2012. Taphonomy of the late Ediacaran enigmatic ribbon-like fossil Shaanxilithes. PALAIOS, 27:354-372.
    • MEYER, M., S. XIAO, B. C. GILL, J. D. SCHIFFBAUER, Z. CHEN, C. ZHOU, AND C. YUAN. 2014c. Interactions between Ediacaran animals and microbial mats: insights from Lamonte trevallis, a new trace fossil from the Dengying Formation of South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 396:62-74.
    • NARBONNE, G. M. 2004. Modular construction of early Ediacaran complex life forms. Science, 305:1141- 1144.
    • NARBONNE, G. M. 2005. The Ediacara Biota: Neoproterozoic origin of animals and their ecosystems. Annual Review of Earth and Planetary Sciences, 33:421-442. doi: 10.1146/ annurev.earth.33.092203.122519.
    • NARBONNE, G. M., R. W. DALRYMPLE, AND J. G. GEHLING. 2001. Neoproterozoic fossils and e n v i r o n m e n t s o f t h e Av a l o n P e n i n s u l a , Newfoundland. Geological Association of CanadaMineralogical Association of Canada Joint Annual Meeting Guidebook: St. Johns 2001, Trip B5.
    • NARBONNE, G. M., M. LAFLAMME, C. GREENTREE, AND P. TRUSLER. 2009. Reconstructing a lost world: Ediacaran rangeomorphs from Spaniard's Bay, Newfoundland. Journal of Paleontology, 83:503-523. doi: 10.2307/29739123.
    • NARBONNE, G. M., S. XIAO, G. A. SHIELDS, AND J. G. GEHLING. 2012. Chapter 18-The Ediacaran Period, p. 413-435. In F. M. Gradstein, J. G. Ogg, M. D. Schmitz, and G. M. Ogg (eds.), The Geologic Time Scale. Elsevier, Boston.
    • NOFFKE, N., G. GERDES, T. KLENKE, AND W. E. K R U M B E I N . 2 0 0 1 . M i c r o b i a l l y i n d u c e d sedimentary structures: A new category within the classification of primary sedimentary structures. Journal of Sedimentary Research, 71:649-656.
    • NOFFKE, N., A. H. KNOLL, AND J. P. GROTZINGER. 2002. Sedimentary controls on the formation and preservation of microbial mats in siliciclastic deposits: A case study from the Upper N e o p r o t e r o z o i c N a m a G r o u p , N a m i b i a . PALAIOS, 17:533-544. doi: 10.2307/3515692.
    • NORRIS, R. D. 1989. Cnidarian taphonomy and affinities of the Ediacara biota. Lethaia, 22:381- 393. doi:10.1111/j.1502-3931.1989.tb01439.x.
    • ORR, P. J., D. E. G. BRIGGS, AND S. L. KEARNS. 1998. Cambrian Burgess Shale animals replicated in clay m i n e r a l s . S c i e n c e , 2 8 1 : 11 7 3 - 11 7 5 . d o i : 10.2307/2895499.
    • PAGE, A., S. E. GABBOTT, P. R. WILBY, AND J. A. ZALASIEWICZ. 2008. Ubiquitous Burgess Shalestyle “clay templates” in low-grade metamorphic mudrocks. Geology, 36:855-858. doi: 10.1130/ G24991A.1.
    • PENNY, A. M., R. WOOD, A. CURTIS, F. BOWYER, R. TOSTEVIN, AND K.-H. HOFFMAN. 2014. Ediacaran metazoan reefs from the Nama Group, Namibia. Science, 344:1504-1506. doi: 10.1126/science. 1253393.
    • PETERSON, K. J., B. WAGGONER, AND J. W. H AGADORN . 2 0 0 3 . A f u n g a l a n a l o g f o r Newfoundland Ediacaran fossils? Integrative and Comparative Biology, 43:127-136.
    • RAFF, R. A., AND E. C. RAFF. 2014. The role of biology in the fossilization of embryos and other soft-bodied organisms: Microbial biofilms and Lagerstätten. p. 83-100. In M. Laflamme, J. D. Schiffbauer, and S. A. F. Darroch (eds.), Reading and Writing of the Fossil Record: Preservational Pathways to Exceptional Fossilization. The Paleontological Society Papers 20. Yale Press, New Haven, Ct.
    • RETALLACK, G. J. 1994. Were the Ediacaran fossils l i c h e n s ? P a l e o b i o l o g y, 2 0 : 5 2 3 - 5 4 4 . d o i : 10.2307/2401233.
    • RUNNEGAR, B. N., AND FEDONKIN, M. A. 1992. Proterozoic metazoan body fossils, p. 369-387. In J. W. Schopf and C. Klein (eds.), The Proterozoic Biosphere, A Multidisciplinary Study. Cambridge University Press, Cambridge.
    • SANSOM, R. S. 2014. Experimental decay of soft tissues, p. 217-236. In M. Laflamme, J. D. Schiffbauer, and S. A. F. Darroch (eds.), Reading and Writing of the Fossil Record: Preservational Pathways to Exceptional Fossilization. The Paleontological Society Papers 20. Yale Press, New Haven, Ct.
    • SCHIFFBAUER, J. D., A. F. WALLACE, J. BROCE, AND S. XIAO. 2014. Exceptional fossil conservation through phosphatization, p. 59-82. In M. Laflamme, J. D. Schiffbauer, and S. A. F. Darroch (eds.), Reading and Writing of the Fossil Record: P r e s e r v a t i o n a l P a t h w a y s t o E x c e p t i o n a l Fossilization. The Paleontological Society Papers 20. Yale Press, New Haven, Ct.
    • SCOTT, C., T. W. LYONS, A. BEKKER, Y. SHEN, S. W. POULTON, X. CHU, AND A. D. ANBAR. 2008. Tracing the stepwise oxygenation of the Proterozoic ocean. Nature, 452:456-459. doi: 10.1038/nature06811.
    • SEILACHER, A. 1984. Late Precambrian and Early Cambrian Metazoa: preservational or real extinctions?, p. 159-168. In H. D. Holland and A. F. Trendall (eds.), Patterns of Change in Earth Evolution. Report of the Dahlem Workshop, Berlin May 1-6, 1983. Springer-Verlag, Berlin.
    • S E I L A C H E R , A . 1 9 9 2 . Ve n d o b i o n t a a n d Psammocorallia: lost constructions of Precambrian evolution. Journal of the Geological Society, 149:607-613. doi: 10.1144/gsjgs.149.4.0607.
    • SEILACHER, A. 1999. Biomat-related lifestyles in the P r e c a m b r i a n . PA L A I O S , 1 4 : 8 6 - 9 3 . d o i : 10.2307/3515363.
    • SEILACHER, A., D. GRAZHDANKIN, AND A. LEGOUTA. 2003. Ediacaran biota: The dawn of animal life in the shadow of giant protists. Paleontological Research, 7:43-54. doi: 10.2517/prpsj.7.43.
    • SPERLING, E. A., C. A. FRIEDER, A. V. RAMAN, P. R. GIRGUIS, L. A. LEVIN, AND A. H. KNOLL. 2013. Oxygen, ecology, and the Cambrian radiation of animals. Proceedings of the National Academy of Sciences of the United States of America, 110:13446-13451. doi: 10.1073/pnas.1312778110.
    • SPERLING, E. A., K. J. PETERSON, AND M. LAFLAMME. 2011. Rangeomorphs, Thectardis (Porifera?), and dissolved organic carbon in the Ediacaran oceans. G e o b i o l o g y, 9 : 2 4 - 3 3 . d o i : 1 0 . 1 1 1 1 / j . 1472-4669.2010.00259.x.
    • SPERLING, E. A., AND J. VINTHER. 2010. A placozoan affinity for Dickinsonia and the evolution of late Proterozoic metazoan feeding modes. Evolution & Development, 12: 201-209. doi: 10.1111/j. 1525-142X.2010.00404.x.
    • SPRIGG, R. C. 1947. Early Cambrian(?) jellyfishes from the Flinders Ranges, South Australia. Transactions of The Royal Society of South Australia, 71:212-224.
    • SPRIGG, R. C. 1949. Early Cambrian “jellyfishes” of Ediacara, South Australia and Mount John, K i m b e r l e y D i s t r i c t , We s t e r n A u s t r a l i a . Transactions of The Royal Society of South Australia, 73:72-99.
    • STEINER, M., AND J. REITNER. 2001. Evidence of organic structures in Ediacara-type fossils and associated microbial mats. Geology, 29:1119- 1122. doi:10.1130/0091-7613(2001)029 <1119:EOOSIE>2.0.CO;2.
    • SUN, W. 1986. Late Precambrian pennatulids (sea pens) from the eastern Yangtze Gorge, China. Paracharnia gen. nov. Precambrian Research, 31:361-375. doi:10.1016/0301-9268(86)90040-9.
    • TARHAN, L. G., M. L. DROSER, AND J. G. GEHLING. 2010. Taphonomic controls on Ediacaran diversity: uncovering the holdfast origin of morphologically variable enigmatic structures. PALAIOS, 25:823-830. doi: 10.2110/palo. 2010.p10-074r.
    • VICKERS-RICH, P., A. Y. IVANTSOV, P. W. TRUSLER, G. M. NARBONNE, M. HALL, S. A. WILSON, C. GREENTREE, M. A. FEDONKIN, D. A. ELLIOTT, K. H. HOFFMANN, AND G. I. C. SCHNEIDER. 2013. Reconstructing Rangea: New discoveries from the Ediacaran of Southern Namibia. Journal of Paleontology, 87:1-15. doi: 10.1666/12-074R.1.
    • WADE, M . 1 9 6 9 . M e d u s a e f r o m u p p e r m o s t Precambrian or Cambrian sandstones, central Australia. Palaeontology, 12:351-365.
    • WAGGONER, B. 2003. The Ediacaran biotas in space and time. Integrative and Comparative Biology, 43:104-113.
    • WILBY, P. R., J. N. CARNEY, AND M. P. A. HOWE. 2011. A rich Ediacaran assemblage from eastern Avalonia: Evidence of early widespread diversity in the deep ocean. Geology, 39:655-658. doi: 10.1130/G31890.1.
    • XIAO, S., M. DROSER, J. G. GEHLING, I. V. HUGHES, B. WAN, Z. CHEN, AND X. YUAN. 2013. Affirming life aquatic for the Ediacara biota in China and Australia. Geology, 41:1095-1098. doi: 10.1130/ G34691.1.
    • XIAO, S., AND M. LAFLAMME. 2009. On the eve of animal radiation: phylogeny, ecology and evolution of the Ediacara biota. Trends in Ecology & Evolution, 24:31-40. doi: 10.1016/j.tree. 2008.07.015.
    • XIAO, S., B. SHEN, C. ZHOU, G. XIE, AND X. YUAN. 2005. A uniquely preserved Ediacaran fossil with direct evidence for a quilted bodyplan. Proceedings of the National Academy of Sciences of the United States of America, 102:10227- 10232. doi: 10.1073/pnas.0502176102.
    • XIAO, S., X. YUAN, M. STEINER, AND A. H. KNOLL. 2002. Macroscopic carbonaceous compressions in a terminal Proterozoic shale: A systematic reassessment of the Miaohe Biota, South China. Journal of Paleontology, 76:347-376. doi: 10.2307/1307146.
    • YUAN, X., Z. CHEN, S. XIAO, C. ZHOU, AND H. HUA. 2011. An early Ediacaran assemblage of macroscopic and morphologically differentiated eukaryotes. Nature, 470:390-393. doi: 10.1038/ nature09810.
    • ZHANG, X., H. HUA, AND J. REITNER. 2006. A new type of Precambrian megascopic fossils: the Jinxian biota from northeastern China. Facies, 52:169-181. doi: 10.1007/s10347-005-0027-z.
    • ZHU, M., J. G. GEHLING, S. XIAO, Y. ZHAO, AND M. L. DROSER. 2008. Eight-armed Ediacara fossil preserved in contrasting taphonomic windows from China and Australia. Geology, 36:867-870. doi: 10.1130/G25203A.1.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article