Remember Me
Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:

OpenAIRE is about to release its new face with lots of new content and services.
During September, you may notice downtime in services, while some functionalities (e.g. user registration, login, validation, claiming) will be temporarily disabled.
We apologize for the inconvenience, please stay tuned!
For further information please contact helpdesk[at]openaire.eu

fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Billingsley, DJ; Lee, AJ; Johansson, NAB; Walton, A; Stanger, L; Crampton, N; Bonass, WA; Thomson, NH (2014)
Publisher: IOP Publishing
Languages: English
Types: Article

Classified by OpenAIRE into

mesheuropmc: stomatognathic diseases
The binding of double-stranded (ds) DNA to mica can be controlled through ion-exchanging the mica with divalent cations. Measurements of the end-to-end distance of linear DNA molecules discriminate whether the binding mechanism occurs through 2D surface equilibration or kinetic trapping. A range of linear dsDNA fragments have been used to investigate length dependences of binding. Mica, ion-exchanged with Ni(II) usually gives rise to kinetically trapped DNA molecules, however, short linear fragments (<800 bp) are seen to deviate from the expected behaviour. This indicates that ion-exchanged mica is heterogeneous, and contains patches or domains, separating different ionic species. These results correlate with imaging of dsDNA under aqueous buffer on Ni(II)-mica and indicate that binding domains are of the order of 100 nm in diameter. Shorter DNA fragments behave intermediate to the two extreme cases of 2D equilibration and kinetic trapping. Increasing the incubation time of Ni(II) on mica, from minutes to hours, brings the conformations of the shorter DNA fragments closer to the theoretical value for kinetic trapping, indicating that long timescale kinetics play a role in ion-exchange. X-ray photoelectron spectroscopy (XPS) was used to confirm that the relative abundance of Ni(II) ions on the mica surface increases with time. These findings can be used to enhance spatial control of binding of DNA to inorganic surfaces with a view to patterning high densities arrays.
  • No references.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article

Cookies make it easier for us to provide you with our services. With the usage of our services you permit us to use cookies.
More information Ok