Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Liu, H.Y.; Childs, D.T.; Badcock, T.J.; Groom, K.M.; Sellers, I.R.; Hopkinson, M.; Hogg, R.A.; Robbins, D.J.; Mowbray, D.J.; Skolnick, M.S. (2005)
Languages: English
Types: Article
The combination of high-growth-temperature GaAs spacer layers and high-reflectivity (HR)-coated facets has been utilized to obtain low threshold currents and threshold current densities for 1.3-/spl mu/m multilayer InAs-GaAs quantum-dot lasers. A very low continuous-wave (CW) room-temperature threshold current of 1.5 mA and a threshold current density of 18.8 A/cm/sup 2/ are achieved for a three-layer device with a 1-mm HR/HR cavity. For a 2-mm cavity, the CW threshold current density is as low as 17 A/cm/sup 2/ for an HR/HR device. An output power as high as 100 mW is obtained for a device with HR/cleaved facets.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • [1] V. M. Ustinov, A. E. Zhukov, A. Yu. Egorov, and N. A. Maleev, Quantum Dot Lasers. New York: Oxford, 2003.
    • [2] X. Huang, A. Stintz, C. P. Hains, G. T. Liu, J. Cheng, and K. J. Malloy, “Very low threshold current density room temperature continuous-wave lasing from a single-layer InAs quantum-dot laser,” IEEE Photon. Technol. Lett., vol. 12, no. 3, pp. 227-229, Mar. 2000.
    • [3] G. Park, O. B. Shchekin, D. L. Huffaker, and D. G. Deppe, “Low-threshold oxide-confined 1.3- m quantum-dot laser,” IEEE Photon. Technol. Lett., vol. 13, no. 3, pp. 230-232, Mar. 2000.
    • [4] E. C. Le Ru, A. J. Bennett, C. Robert, and R. Murray, “Strain and electronic interactions in InAs/GaAs quantum dots multilayers for 1300 nm emission,” J. Appl. Phys., vol. 91, pp. 1365-1370, 2002.
    • [5] H. Y. Liu, I. R. Sellers, M. Gutierrez, K. M. Groom, W. M. Soong, M. Hopkinson, J. P. R. David, R. Beanland, T. J. Badcock, D. J. Mowbray, and M. S. Skolnick, “Influence of the spacer layer growth temperature on multilayer InAs/GaAs quantum dot structures,” J. Appl. Phys., vol. 96, pp. 1988-1992, 2004.
    • [6] H. Y. Liu, I. R. Sellers, T. J. Badcock, D. J. Mowbray, M. S. Skolnick, K. M. Groom, M. Gutierrez, M. Hopkinson, J. S. Ng, J. P. R. David, and R. Beanland, “Improved performance of 1.3 m multilayer InAs/GaAs quantum-dot lasers using a high-growth-temperature GaAs spacer layer,” Appl. Phys. Lett., vol. 85, pp. 704-706, 2004.
    • [7] L. F. Lester, A. Stintz, H. Li, T. C. Newell, E. A. Pease, B. A. Fuchs, and K. J. Malloy, “Optical characteristics of 1.24- m InAs quantum-dot laser diode,” IEEE Photon. Technol. Lett., vol. 11, no. 8, pp. 931-933, Aug. 1999.
    • [8] H. Y. Liu, M. Hopkinson, C. N. Harrison, M. J. Steer, R. Frith, I. R. Sellers, D. J. Mowbray, and M. S. Skolnick, “Optimizing the growth of 1.3 m InAs/InGaAs dots-in-a-well structure,” J. Appl. Phys., vol. 93, pp. 2931-2936, 2003.
    • [9] G. Park, D. L. Huffaker, Z. Zou, O. B. Shchekin, and D. G. Deppe, “Temperature dependence of lasing characteristic for long-wavelength (1.3- m) GaAs-based quantum-dot lasers,” IEEE Photon. Technol. Lett., vol. 11, no. 3, pp. 301-303, Mar. 1999.
    • [10] O. B. Shchekin, G. Park, D. L. Huffaker, Q. Mo, and D. G. Deppe, “Lowthreshold continuous-wave two-stack quantum-dot laser with reduced temperature sensitivity,” IEEE Photon. Technol. Lett., vol. 12, no. 9, pp. 1120-1122, Sep. 2000.
    • [11] C. L. Walker, I. C. Sandall, P. M. Smowton, I. R. Sellers, D. J. Mowbray, H. Y. Liu, and M. Hopkinson, The Role of High Growth Temperature GaAs Spacer Layers in 1.3 m In(Ga)As Quantum Dot Lasers. unpublished.
    • [12] O. B. Shchekin and D. G. Deppe, “Low-threshold high-T 1.3- m InAs quantum-dot lasers due to p-type modulation doping of the active region,” IEEE Photon. Technol. Lett., vol. 14, no. 9, pp. 1231-1233, Sep. 2002.
    • [13] A. E. Zhukov, A. R. Kovsh, V. M. Ustinov, Yu. M. Shernyakov, S. S. Mikhrin, N. A. Maleev, E. Yu. Kondrat'eva, D. A. Livshits, M. V. Maximov, B. V. Volovik, D. A. Bedarev, Yu. G. Musikhin, N. N. Ledentsov, P. S. Kop'ev, Zh. I. Alferov, and D. Bimberg, “Continuous-wave operation of long-wavelength quantum-dot diode laser on a GaAs substrate,” IEEE Photon. Technol. Lett., vol. 11, no. 11, pp. 1345-1347, Nov. 1999.
    • [14] S. Fathpour, Z. Mi, P. Bhattacharya, A. R. Kovsh, S. S. Mikhrin, I. L. Krestnikov, A. V. Kozhukhov, and N. N. Ledentsov, “The role of Auger recombination in the temperature-dependent output characteristics (T = 1) of p-doped 1.3 m quantum dot lasers,” Appl. Phys. Lett., vol. 85, pp. 5164-5166, 2004.
    • [15] A. R. Kovsh, N. A. Maleev, A. E. Zhukov, S. S. Mikhrin, A. P. Vasil'ev, E. A. Semenova, Yu. M. Shernyakov, M. V. Maximov, D. A. Livshits, V. M. Ustinov, N. N. Ledentsov, D. Bimberg, and Zh. I. Alferov, “InAs/InGaAs/GaAs quantum dot lasers of 1.3 m range with enhanced optical gain,” J. Cryst. Growth, vol. 251, pp. 729-736, 2003.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article