OpenAIRE is about to release its new face with lots of new content and services.
During September, you may notice downtime in services, while some functionalities (e.g. user registration, login, validation, claiming) will be temporarily disabled.
We apologize for the inconvenience, please stay tuned!
For further information please contact helpdesk[at]

fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Studley, M.; Bull, L. (2007)
Publisher: Massachusetts Institute of Technology Press
Languages: English
Types: Article

Classified by OpenAIRE into

  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 1. Bull, L., & Studley, M. (2002). Consideration of multiple objectives in neural learning classifier systems. In Parallel Problem Solving from Nature - PPSN VII (pp. 549 - 557). New York: Springer-Verlag.
    • 2. Butz, M., & Wilson, S. W. (2001). An algorithmic description of XCS. In Advances in Learning Classifier Systems: Proceedings of the Fourth International Workshop on Learning Classifier Systems (pp. 253 - 272). New York: Springer-Verlag.
    • 3. Butz, M. V., & Goldberg, D. E. (2003). Bounding the population size in XCS to ensure reproductive opportunities. Evolutionary Computation, 11(3), 239 - 278.
    • 4. Butz, M., Kovacs, T., Lanzi, P., & Wilson, S. W. (2004). Toward a theory of generalization and learning in XCS. IEEE Transactions on Evolutionary Computation, 8(1), 28 - 46.
    • 5. Crabbe, F. L. (2001). Multiple goal Q-learning: Issues and functions. In Proceedings of the International Conference on Computational Intelligence for Modelling Control and Automation (CIMCA). San Mateo, CA: Morgan Kaufmann.
    • 6. Deb, K. (2001). Multi-objective optimization using evolutionary algorithms. New York: Wiley.
    • 7. Dorigo, M., & Colombetti, M. (1998). Robot shaping: An experiment in behavior engineering. Cambridge, MA: MIT Press.
    • 8. Gabor, Z., Kalmar, Z., & Szepesvari, C. (1998). Multi-criteria reinforcement learning. In Proceedings of the International Conference on Machine Learning. San Mateo, CA: Morgan Kaufmann.
    • 9. Holland, J. H. (1975). Adaptation in natural and artificial systems. Ann Arbor: University of Michigan Press.
    • 10. Holland, J. H. (1976). Adaptation. In R. Rosen & F. M. Snell (Eds.), Progress in theoretical biology (pp. 263 - 293). San Diego, CA: Academic Press.
    • 11. Holland, J. H., & Reitman, J. S. (1978). Cognitive systems based on adaptive algorithms. In D. A. Waterman & F. Hayes-Roth (Eds.), Pattern-directed inference systems (pp. 313 - 319). San Diego, CA: Academic Press.
    • 12. Lanzi, P. L. (2000). An analysis of generalization in the XCS classifier system. Evolutionary Computation, 7(2), 125 - 149.
    • 13. Llora, X., & Goldberg, D. E. (2003). Bounding the effect of noise in multiobjective learning classifier systems. Evolutionary Computation, 11(3), 278 - 297.
    • 14. Smith, S. F. (1980). A learning system based on genetic adaptive algorithms. Ph.D. thesis. University of Pittsburgh, Pittsburgh, Pennsylvania.
    • 15. Sutton, R. A., & Barto, A. G. (1998). Reinforcement learning: An introduction. Cambridge, MA: MIT Press.
    • 16. Watkins, C. J. C. H. (1989). Learning from delayed rewards. Ph.D. thesis. University of Cambridge, Cambridge, UK.
    • 17. Wilson, S. W. (1994). ZCS: A zeroth level classifier system. Evolutionary Computation, 2(1), 1 - 18.
    • 18. Wilson, S. W. (1995). Classifier fitness based on accuracy. Evolutionary Computation, 3(2), 149 - 175.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article

Cookies make it easier for us to provide you with our services. With the usage of our services you permit us to use cookies.
More information Ok