Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Languages: English
Types: Article
Subjects: 11000/11, 11000/13
Bone is the second most widely transplanted tissue after blood. Synthetic alternatives are needed that can reduce the need for transplants and regenerate bone by acting as active temporary templates for bone growth. Bioactive glasses are one of the most promising bone replacement/regeneration materials because they bond to existing bone, are degradable and stimulate new bone growth by the action of their dissolution products on cells. Sol-gel-derived bioactive glasses can be foamed to produce interconnected macropores suitable for tissue ingrowth, particularly cell migration and vascularization and cell penetration. The scaffolds fulfil many of the criteria of an ideal synthetic bone graft, but are not suitable for all bone defect sites because they are brittle. One strategy for improving toughness of the scaffolds without losing their other beneficial properties is to synthesize inorganic/organic hybrids. These hybrids have polymers introduced into the sol-gel process so that the organic and inorganic components interact at the molecular level, providing control over mechanical properties and degradation rates. However, a full understanding of how each feature or property of the glass and hybrid scaffolds affects cellular response is needed to optimize the materials and ensure long-term success and clinical products. This review focuses on the techniques that have been developed for characterizing the hierarchical structures of sol-gel glasses and hybrids, from atomicscale amorphous networks, through the covalent bonding between components in hybrids and nanoporosity, to quantifying open macroporous networks of the scaffolds. Methods for non-destructive in situ monitoring of degradation and bioactivity mechanisms of the materials are also included. © 2012 The Royal Society.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 1 Van Heest, A. & Swiontkowski, M. 1999 Bone-graft substitutes. Lancet 353(Suppl. 1), SI28- SI29.
    • 2 Lewandrowski, K. U., Gresser, J. D., Wise, D. L. & Trantol, D. J. 2000 Bioresorbable bone graft substitutes of different osteoconductivities: a histologic evaluation of osteointegration of poly(propylene glycol-co-fumaric acid)-based cement implants in rats. Biomaterials 21, 757-764. (doi:10.1016/S0142-9612(99)00179-9)
    • 3 Giannoudis, P. V., Dinopoulos, H. & Tsiridis, E. 2005 Bone substitutes: an update, injuryinternational. J. Care Injured 36, S20-S27. (doi:10.1016/j.injury.2005.07.029)
    • 4 Summers, B. N. & Eisenstein, S. M. 1989 Donor site pain from the ilium: a complication of the lumbar spine fusion. J. Bone Joint Surg. B 71, 677-680.
    • 5 Skaggs, D. L., Samuelson, M. A., Hale, J. M., Kay, R. M. & Tolo, V. T. 2000 Complications of posterior iliac crest bone grafting in spine surgery in children. Spine 25, 2400-2402. (doi:10.1097/00007632-200009150-00021)
    • 6 Salzman, N. P., Psallidopoulos, M., Prewett, A. B. & Oleary, R. 1993 Detection of HIV in bone allografts prepared from aids autopsy tissue. Clin. Orthop. Relat. Res. 292, 384-390.
    • 7 Carter, G. 1999 Harvesting and implanting allograft bone. AORN J. 70, 660-670. quiz 672-666. (doi:10.1016/S0001-2092(06)62441-1)
    • 8 Jones, J. R., Lin, S., Yue, S., Lee, P. D., Hanna, J. V., Smith, M. E. & Newport, R. J. 2010 Bioactive glass scaffolds for bone regeneration and their hierarchical characterisation. Proc. Inst. Mech. Eng. H J. Eng. Med. 224, 1373-1387. (doi:10.1243/09544119JEIM836)
    • 9 Hench, L. L., Splinter, R. J., Allen, W. C. & Greenlee, T. K. 1971 Bonding mechanisms at the interface of ceramic prosthetic materials. J. Biomed. Mater. Res. Symp. 5, 25. (doi:10.1002/ jbm.820050104)
    • 10 Hench, L. L. 2006 The story of bioglass (R). J. Mater. Sci. Mater. Med. 17, 967-978. (doi:10.1007/s10856-006-0432-z)
    • 11 Cao, W. P. & Hench, L. L. 1996 Bioactive materials. Ceramics Int. 22, 493-507. (doi:10.1016/0272-8842(95)00126-3)
    • 12 Oonishi, H., Kushitani, S., Yasukawa, E., Iwaki, H., Hench, L. L., Wilson, J., Tsuji, E. I. & Sugihara, T. 1997 Particulate bioglass compared with hydroxyapatite as a bone graft substitute. Clin. Orthop. Relat. Res. 334, 316-325.
    • 13 Oonishi, H., Hench, L. L., Wilson, J., Sugihara, F., Tsuji, E., Matsuura, M., Kin, S., Yamamoto, T. & Mizokawa, S. 2003 Quantitative comparison of bone growth behavior in granules of Bioglass (R), A-W glass-ceramic, and hydroxyapatite. J. Biomed. Mater. Res. 51, 37-46. (doi:10.1002/(SICI)1097-4636(200007)51:1<37::AID-JBM6>3.0.CO;2-T)
    • 14 Chen, Q. Z., Thompson, I. D. & Boccaccini, A. R. 2006 45S5 Bioglass-derived glass-ceramic scaffolds for bone tissue engineering. Biomaterials 27, 2414-2425. (doi:10.1016/j.biomaterials. 2005.11.025)
    • 15 Wu, Z. Y., Hill, R. G., Yue, S., Nightingale, D., Lee, P. D. & Jones, J. R. 2011 Melt-derived bioactive glass scaffolds produced by a gel-cast foaming technique. Acta Biomater. 7, 1807-1816. (doi:10.1016/j.actbio.2010.11.041)
    • 16 Fu, Q., Rahaman, M. N., Bal, B. S., Brown, R. F. & Day, D. E. 2008 Mechanical and in vitro performance of 13-93 bioactive glass scaffolds prepared by a polymer foam replication technique. Acta Biomater. 4, 1854-1864. (doi:10.1016/j.actbio.2008.04.019)
    • 17 Li, R., Clark, A. E. & Hench, L. L. 1919 An investigation of bioactive glass powders by sol-gel processing. J. Appl. Biomater. 2, 231-239. (doi:10.1002/jab.770020403)
    • 18 Sepulveda, P., Jones, J. R. & Hench, L. L. 2001 Characterization of melt-derived 45S5 and sol-gel-derived 58S bioactive glasses. J. Biomed. Mater. Res. 58, 734-740. (doi:10.1002/jbm. 10026)
    • 19 Jones, J. R., Ehrenfried, L. M. & Hench, L. L. 2006 Optimising bioactive glass scaffolds for bone tissue engineering. Biomaterials 27, 964-973. (doi:10.1016/j.biomaterials.2005.07.017)
    • 20 Valliant, E. M. & Jones, J. R. 2011 Softening bioactive glass for bone regeneration: sol-gel hybrid materials. Soft Matter 7, 5083-5095. (doi:10.1039/c0sm01348j)
    • 21 Jones, J. R. & Hench, L. L. 2003 Regeneration of trabecular bone using porous ceramics. Curr. Opin. Solid State Mater. Sci. 7, 301-307. (doi:10.1016/j.cossms.2003.09.012)
    • 22 Jones, J. R., Lee, P. D. & Hench, L. L. 2006 Hierarchical porous materials for tissue engineering. Phil. Trans. R. Soc. A 364, 263-281. (doi:10.1098/rsta.2005.1689)
    • 23 Hulbert, S. F., Morrison, S. J. & Klawitte, J. J. 1972 Tissue reaction to 3 ceramics of porous and non-porous structures. J. Biomed. Mater. Res. 6, 347-374. (doi:10.1002/jbm.820060505)
    • 24 Mackenzie, J. D. 1988 Applications of the sol-gel process. J. Non-Cryst. Solids 100, 162-168. (doi:10.1016/0022-3093(88)90013-0)
    • 25 Saravanapavan, P. & Hench, L. L. 2003 Mesoporous calcium silicate glasses. I. Synthesis. J. Non-Cryst. Solids 318, 1-13. (doi:10.1016/S0022-3093(02)01864-1)
    • 26 Saravanapavan, P. & Hench, L. L. 2001 Low-temperature synthesis, structure, and bioactivity of gel-derived glasses in the binary CaO-SiO2 system. J. Biomed. Mater. Res. 54, 608-618. (doi:10.1002/1097-4636(20010315)54:4<608::AID-JBM18>3.0.CO;2-U)
    • 27 Jones, J. R., Kemp, T. F. & Smith, M. E. 2006 Effect of OH content on the bioactivity of sol-gel derived glass foam scaffolds. Bioceramics 18(Pts 1 and 2), 309-311; 1031-1034. (doi:10.4028/www.scientific.net/KEM.309-311.1031)
    • 28 Labbaf, S., Tsigkou, O., Muller, K. H., Stevens, M. M., Porter, A. E. & Jones, J. R. 2011 Spherical bioactive glass particles and their interaction with human mesenchymal stem cells in vitro. Biomaterials 32, 1010-1018. (doi:10.1016/j.biomaterials.2010.08.082)
    • 29 Hench, L. L. & West, J. K. 1990 The sol-gel process. Chem. Rev. 90, 33-72. (doi:10.1021/ cr00099a003)
    • 30 Duran, A., Serna, C., Fornes, V. & Fernandez Navarro, J. M. 1986 Structural considerations about SiO2 glasses prepared by sol-gel. J. Non-Cryst. Solids 82, 69-77. (doi:10.1016/0022- 3093(86)90112-2)
    • 31 Colby, M. W., Osaka, A. & Mackenzie, J. D. 1986 Effects of temperature on formation of silica gel. J. Non-Cryst. Solids 82, 37-41. (doi:10.1016/0022-3093(86)90108-0)
    • 32 Sepulveda, P., Jones, J. R. & Hench, L. L. 2002 Bioactive sol-gel foams for tissue repair. J. Biomed. Mater. Res. 59, 340-348. (doi:10.1002/jbm.1250)
    • 33 Scherer, G. W. & Brinker, C. J. 1990 Sol-gel science: the physics and chemistry of sol-gel processing. New York, NY: Academic Press.
    • 34 Xynos, I. D., Edgar, A. J., Buttery, L. D. K., Hench, L. L. & Polak, J. M. 2001 Geneexpression profiling of human osteoblasts following treatment with the ionic products of Bioglass (R) 45S5 dissolution. J. Biomed. Mater. Res. 55, 151-157. (doi:10.1002/1097-4636(200105) 55:2<151::AID-JBM1001>3.0.CO;2-D)
    • 35 Xynos, I. D., Hukkanen, M. V. J., Batten, J. J., Buttery, L. D., Hench, L. L. & Polak, J. M. 2000 Bioglass (R) 45S5 stimulates osteoblast turnover and enhances bone formation in vitro: implications and applications for bone tissue engineering. Calcified Tissue Int. 67, 321-329. (doi:10.1007/s002230001134)
    • 36 Hench, L. L. & Thompson, I. 2010 Twenty-first century challenges for biomaterials. J. R. Soc. Interface 7, S379-S391. (doi:10.1098/rsif.2010.0151.focus)
    • 37 Hench, L. L., Day, D. E., Höland, W. & Rheinberger, V. M. 2010 Glass and medicine. Int. J. Appl. Glass Sci. 1, 104-117. (doi:10.1111/j.2041-1294.2010.00001.x)
    • 38 Saravanapavan, P., Jones, J. R., Pryce, R. S. & Hench, L. L. 2003 Bioactivity of gel-glass powders in the CaO-SiO2 system: a comparison with ternary (CaO-P2O5-SiO2) and quaternary glasses (SiO2-CaO-P2O5-Na2O). J. Biomed. Mater. Res. A 66, 110-119. (doi:10.1002/jbm.a. 10532)
    • 39 Hench, L. L. 1991 Bioceramics: from concept to clinic. J. Am. Ceramic Soc. 74, 1487-1510. (doi:10.1111/j.1151-2916.1991.tb07132.x)
    • 40 Hill, R. 1996 An alternative view of the degradation of bioglass. J. Mater. Sci. Lett. 15, 1122-1125. (doi:10.1007/BF00539955)
    • 41 Vallet-Regi, M., Ragel, C. V. & Salinas, A. J. 2003 Glasses with medical applications. Eur. J. Inorg. Chem. 2003, 1029-1042. (doi:10.1002/ejic.200390134)
    • 42 Elgayar, I., Aliev, A. E., Boccaccini, A. R. & Hill, R. G. 2005 Structural analysis of bioactive glasses. J. Non-Cryst. Solids 351, 173-183. (doi:10.1016/j.jnoncrysol.2004.07.067)
    • 43 Lin, S., Ionescu, C., Pike, K. J., Smith, M. E. & Jones, J. R. 2009 Nanostructure evolution and calcium distribution in sol-gel derived bioactive glass. J. Mater. Chem. 19, 1276-1282. (doi:10.1039/b814292k)
    • 44 Kim, H.-M., Miyaji, F., Kokubo, T. & Nakamura, T. 1996 Preparation of bioactive Ti and its alloys via simple chemical surface treatment. J. Biomed. Mater. Res. 32, 409-417. (doi:10.1002/ (SICI)1097-4636(199611)32:3<409::AID-JBM14>3.0.CO;2-B)
    • 45 Kawai, T., Ohtsuki, C., Kamitakahara, M., Hosoya, K., Tanihara, M., Miyazaki, T., Sakaguchi, Y. & Konagaya, S. 2007 In vitro apatite formation on polyamide containing carboxyl groups modified with silanol groups. J. Mater. Sci. Mater. Med. 18, 1037-1042. (doi:10.1007/ s10856-006-0081-2)
    • 46 Newport, R. J., Skipper, L. J., Carta, D., Pickup, D. M., Sowrey, F. E., Smith, M. E., Saravanapavan, P. & Hench, L. L. 2006 The use of advanced diffraction methods in the study of the structure of a bioactive calcia: silica sol-gel glass. J. Mater. Sci. Mater. Med. 17, 1003-1010. (doi:10.1007/s10856-006-0436-8)
    • 47 Skipper, L. J., Sowrey, F. E., Rashid, R., Newport, R. J., Lin, Z. & Smith, M. E. 2005 X-ray diffraction and solid state NMR studies of the growth of hydroxyapatite on bioactive calcia: silica sol-gel glasses. Phys. Chem. Glasses 46, 372-376.
    • 48 Lin, S., Ionescu, C., Baker, S., Smith, M. E. & Jones, J. R. 2010 Characterisation of the inhomogeneity of sol-gel-derived SiO2-CaO bioactive glass and a strategy for its improvement. J. Sol-Gel Sci. Technol. 53, 255-262. (doi:10.1007/s10971-009-2085-0)
    • 49 Yue, S., Lee, P. D., Poologasundarampillai, G., Yao, Z. Z., Rockett, P., Devlin, A. H., Mitchell, C. A., Konerding, M. A. & Jones, J. R. 2010 Synchrotron X-ray microtomography for assessment of bone tissue scaffolds. J. Mater. Sci. Mater. Med. 21, 847-853. (doi:10.1007/ s10856-009-3888-9)
    • 50 Rehman, I., Hench, L. L., Bonfield, W. & Smith, R. 1994 Analysis of surface-layers on bioactive glasses. Biomaterials 15, 865-870. (doi:10.1016/0142-9612(94)90044-2)
    • 51 Martin, R. A., Twyman, H., Qiu, D., Knowles, J. C. & Newport, R. J. 2009 A study of the formation of amorphous calcium phosphate and hydroxyapatite on melt quenched Bioglass(A (R)) using surface sensitive shallow angle X-ray diffraction. J. Mater. Sci. Mater. Med. 20, 883-888. (doi:10.1007/s10856-008-3661-5)
    • 52 Mead, R. N. & Mountjoy, G. 2006 Modeling the local atomic structure of bioactive sol-gel-derived calcium silicates. Chem. Mater. 18, 3956-3964. (doi:10.1021/cm0527975)
    • 53 FitzGerald, V., Drake, K. O., Jones, J. R., Smith, M. E., Honkimaki, V., Buslaps, T., Kretzschmer, M. & Newport, R. J. 2007 In situ high-energy X-ray diffraction study of a bioactive calcium silicate foam immersed in simulated body fluid. J. Synchrotron Radiat. 14, 492-499. (doi:10.1107/S0909049507042173)
    • 54 Skipper, L. J., Sowrey, F. E., Pickup, D. M., Drake, K. O., Smith, M. E., Saravanapavan, P., Hench, L. L. & Newport, R. J. 2005 The structure of a bioactive calcia-silica sol-gel glass. J. Mater. Chem. 15, 2369-2374. (doi:10.1039/b501496d)
    • 55 Newport, R. J., Skipper, L. J., FitzGerald, V., Pickup, D. M., Smith, M. E. & Jones, J. R. 2007 In vitro changes in the structure of a bioactive calcia-silica sol-gel glass explored using isotopic substitution in neutron diffraction. J. Non-Cryst. Solids 353, 1854-1859. (doi:10.1016/ j.jnoncrysol.2007.02.015)
    • 56 Skipper, L. J. et al. 2004 Structural studies of bioactivity in sol-gel-derived glasses by X-ray spectroscopy. J. Biomed. Mater. Res. A 70, 354-360. (doi:10.1002/jbm.a.30093)
    • 57 Skipper, L. J., Sowrey, F. E., Pickup, D. M., Newport, R. J., Drake, K. O., Lin, Z. H., Smith, M. E., Saravanapavan, P. & Hench, L. L. 2005 The atomic-scale interaction of bioactive glasses with simulated body fluid. Cross-Discipl. Appl. Res. Mater. Sci. Technol. 480-481, 21-26. (doi:10.4028/www.scientific.net/MSF.480-481.21)
    • 58 Mead, R. N. & Mountjoy, G. 2006 Molecular dynamics modelling of the structure of bioactive (CaO)(0.3)(SiO2)(0.7) sol-gel. Adv. Mater. Forum Iii 514-516(Pts 1 and 2), 1059-1063. (doi:10.4028/www.scientific.net/MSF.514-516.1059)
    • 59 Lin, Z. J., Smith, M. E., Sowrey, F. E. & Newport, R. J. 2004 Probing the local structural environment of calcium by natural-abundance solid-state Ca-43 NMR. Phys. Rev. B 69, 224107. (doi:10.1103/PhysRevB.69.224107)
    • 60 Sears, V. F. 1992 Neutron scattering lengths and cross sections. Neutron News 3, 26-37. (doi:10.1080/10448639208218770)
    • 61 FitzGerald, V., Martin, R. A., Jones, J. R., Qiu, D., Wetherall, K. M., Moss, R. M. & Newport, R. J. 2009 Bioactive glass sol-gel foam scaffolds: evolution of nanoporosity during processing and in situ monitoring of apatite layer formation using small- and wide-angle X-ray scattering. J. Biomed. Mater. Res. A 91, 76-83. (doi:10.1002/jbm.a.32206)
    • 62 Salinas, A. J., Martin, A. I. & Vallet-Regi, M. 2002 Bioactivity of three CaO-P2O5-SiO2 sol-gel glasses. J. Biomed. Mater. Res. 61, 524-532. (doi:10.1002/jbm.10229)
    • 63 Vallet-Regi, M., Arcos, D. & Perez-Pariente, J. 2003 Evolution of porosity during in vitro hydroxycarbonate apatite growth in sol-gel glasses. J. Biomed. Mater. Res. 51, 23-28. (doi:10.1002/(SICI)1097-4636(200007)51:1<23::AID-JBM4>3.0.CO;2-B)
    • 64 Vallet-Regi, M., Romero, A. M., Ragel, C. V. & LeGeros, R. Z. 1999 XRD, SEM-EDS, and FTIR studies of in vitro growth of an apatite-like layer on sol-gel glasses. J. Biomed. Mater. Res. 44, 416-421. (doi:10.1002/(SICI)1097-4636(19990315)44:4<416::AID-JBM7>3.0.CO;2-S)
    • 65 Roman, J., Padilla, S. & Vallet-Regi, M. 2003 Sol-gel glasses as precursors of bioactive glass ceramics. Chem. Mater. 15, 798-806. (doi:10.1021/cm021325c)
    • 66 Lao, J., Nedelec, J. M., Moretto, P. & Jallot, E. 2006 Micro-PIXE characterization of interactions between a sol-gel derived bioactive glass and biological fluids. Nucl. Instr. Methods Phys. Res. B, Beam Interact. Mater. At. 245, 511-518. (doi:10.1016/j.nimb.2005.12.049)
    • 67 Lao, J., Nedelec, J. M., Moretto, P. & Jallot, E. 2008 Micro-PIXE-RBS methods highlighting the influence of phosphorus on the in vitro bioactivity of sol-gel derived glass particles in the SiO2-CaO-P2O5 system. Nucl. Instr. Methods Phys. Res. B, Beam Interact. Mater. At. 266, 2412-2417. (doi:10.1016/j.nimb.2008.03.013)
    • 68 Courtheoux, L., Lao, J., Nedelec, J. M. & Jallot, E. 2008 Controlled bioactivity in zinc-doped sol-gel-derived binary bioactive glasses. J. Phys. Chem. C 112, 13 663-13 667. (doi:10.1021/ jp8044498)
    • 69 Lao, J., Nedelec, J. M. & Jallot, E. 2008 New insights in the physico-chemistry at the interface between sol-gel derived bioactive glasses and biological medium: A PIXE-RBS study (vol 112C, pg 9418, 2008). J. Phys. Chem. C 112, 14 220-14 220. (doi:10.1021/jp8061898)
    • 70 Martin, R. A. et al. 2011 An X-ray micro-fluorescence study to investigate the distribution of Al, Si, P and Ca ions in the surrounding soft tissue after implantation of a calcium phosphatemullite ceramic composite in a rabbit animal model. J. Mater. Sci. Mater. Med. 22, 2537-2543. (doi:10.1007/s10856-011-4428-y)
    • 71 Atwood, R. C., Jones, J. R., Lee, P. D. & Hench, L. L. 2004 Analysis of pore interconnectivity in bioactive glass foams using X-ray microtomography. Scr. Mater. 51, 1029-1033. (doi:10.1016/j.scriptamat.2004.08.014)
    • 72 Jones, J. R., Poologasundarampillai, G., Atwood, R. C., Bernard, D. & Lee, P. D. 2007 Nondestructive quantitative 3D analysis for the optimisation of tissue scaffolds. Biomaterials 28, 1404-1413. (doi:10.1016/j.biomaterials.2006.11.014)
    • 73 Yue, S., Lee, P. D., Poologasundarampillai, G. & Jones, J. R. 2011 Evaluation of 3-D bioactive glass scaffolds dissolution in a perfusion flow system with X-ray microtomography. Acta Biomater. 7, 2637-2643. (doi:10.1016/j.actbio.2011.02.009)
    • 74 Dong, H. & Blunt, M. J. 2009 Pore-network extraction from micro-computerized-tomography images. Phys. Rev. E, Stat. Nonlinear Soft Matter Phys. 80, 036307. (doi:10.1103/PhysRevE. 80.036307)
    • 75 Dave, B. C., Soyez, H., Miller, J. M., Dunn, B., Valentine, J. S. & Zink, J. I. 1995 Synthesis of protein-doped sol-gel SiO2 thin films: evidence for rotational mobility of encapsulated cytochrome c. Chem. Mater. 7, 1431-1434. (doi:10.1021/cm00056a003)
    • 76 Xie, Z.-P., Zhang, C.-Q., Yi, C.-Q., Qiu, J.-J., Wang, J.-Q. & Zhou, J. In vivo study effect of particulate bioglass (R) in the prevention of infection in open fracture fixation. J. Biomed. Mater. Res. B Appl. Biomater. 90B, 195-201. (doi:10.1002/jbm.b.31273)
    • 77 Bellantone, M., Williams, H. D. & Hench, L. L. 2002 Broad-spectrum bactericidal activity of Ag2O-doped bioactive glass. Antimicrob. Agents Chemother. 46, 1940-1945. (doi:10.1128/ AAC.46.6.1940-1945.2002)
    • 78 Jones, J. R., Ehrenfried, L. M., Saravanapavan, P. & Hench, L. L. 2006 Controlling ion release from bioactive glass foam scaffolds with antibacterial properties. J. Mater. Sci. Mater. Med. 17, 989-996. (doi:10.1007/s10856-006-0434-x)
    • 79 Lenza, R. F. S., Jones, J. R., Vasconcelos, W. L. & Hench, L. L. 2003 In vitro release kinetics of proteins from bioactive foams. J. Biomed. Mater. Res. A 67, 121-129. (doi:10.1002/jbm.a.10042)
    • 80 Karakoti, A. S., Tsigkou, O., Yue, S., Lee, P. D., Stevens, M. M., Jones, J. R. & Seal, S. 2010 Rare earth oxides as nanoadditives in 3-D nanocomposite scaffolds for bone regeneration. J. Mater. Chem. 20, 8912-8919. (doi:10.1039/c0jm01072c)
    • 81 Poologasundarampillai, G., Ionescu, C., Tsigkou, O., Murugesan, M., Hill, R. G., Stevens, M. M., Hanna, J. V., Smith, M. E. & Jones, J. R. 2010 Synthesis of bioactive class II poly(gamma-glutamic acid)/silica hybrids for bone regeneration. J. Mater. Chem. 20, 8952-8961. (doi:10.1039/c0jm00930j)
    • 82 Mahony, O., Tsigkou, O., Ionescu, C., Minelli, C., Ling, L., Hanly, R., Smith, M. E., Stevens, M. M. & Jones, J. R. 2010 Silica-gelatin hybrids with tailorable degradation and mechanical properties for tissue regeneration. Adv. Funct. Mater. 20, 3835-3845. (doi:10.1002/ adfm.201000838)
    • 83 Babonneau, F., Baccile, N., Laurent, G., Maquet, J., Azaïs, T., Gervais, C. & Bonhomme, C. 2009 Solid-state nuclear magnetic resonance: a valuable tool to explore organicinorganic interfaces in silica-based hybrid materials. C. R. Chim. 13, 58-68. (doi:10.1016/ j.crci.2009.08.001)
    • 84 Alonso, B. et al. 2010 Perspectives in 1H, 14N and 81Br solid-state NMR studies of interfaces in materials textured by self-assembled amphiphiles. C. R. Chim. 13, 431-442. (doi:10.1016/j.crci.2009.10.002)
    • 85 Pedone, A., Charpentier, T., Malavasi, G. & Menziani, M. C. 2010 New insights into the atomic structure of 45S5 bioglass by means of solid-state NMR spectroscopy and accurate first-principles simulations. Chem. Mater. 22, 5644-5652. (doi:10.1021/cm102089c)
    • 86 Yu, B., Poologasundarampillai, G., Turdean-Ionescu, C., Smith, M. E. & Jones, J. R. 2011 A new calcium source for bioactive sol-gel hybrids. Bioceramics Dev. Appl. 1, 1-3. (doi:10.4303/bda/D110178)
  • No related research data.
  • No similar publications.

Share - Bookmark

Download from

Cite this article