LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Publisher: Cambridge University Press
Languages: English
Types: Article
Subjects: Q1, QH
Relatively few studies have examined the parasite fauna of British reptiles, partly due to the cryptic nature and low population density of these hosts. Here we examined 12 populations of the slow worm Anguis fragilis which, unlike other UK lizards, occurs at locally high population densities. Morphological examination of non-invasively collected faecal samples revealed the presence of Neoxysomatium brevicaudatum and a second unidentified nematode species. Although previously unrecorded from slow worms in the UK, N. brevicaudatum was present in 38% of animals (mean intensity 70.9, range 1–686). Morphological identification was confirmed by sequencing the 18S ribosomal gene. The use of the species-specific, cytochrome oxidase I mitochondrial gene primers proved an efficient alternative to conventional, microscope screening for parasites, although the original identification of N. brevicaudatum was dependent upon morphological characters. Sequencing also identified the second, smaller nematode as belonging to the Rhabdiasidae family: this species was even more common at a prevalence of 83% (mean intensity 102.8, range 1–2000). While increasing our knowledge of the UK macroparasite fauna, this work demonstrates the benefits of a combined morphological–molecular approach.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Baker, M.R. (1980) Revision of Entomelas Travassos, 1930 (Nematoda: Rhabdiasidae) with a review of genera in the family. Systematic Parasitology 1, 83 - 90.
    • Borkovcova´, M. & Koprˇiva, J. (2005) Parasitic helminths of reptiles (Reptilia) in South Moravia (Czech Republic). Parasitology Research 95, 77 -78.
    • Bush, A.O., Lafferty, K.D., Lotz, J.M. & Shostak, A.W. (1997) Parasitology meets ecology on its own terms: Margolis et al. revisited. Journal of Parasitology 83, 575 - 583.
    • Folmer, O., Black, M., Hoeh, W., Lutz, R. & Vrijenhoek, R. (1994) DNA primers for amplification of mitochondrial cytochrome oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology 3, 294 -299.
    • Jones, R., Cable, J. & Bruford, M.W. (2008) An evaluation of non-invasive genetic analysis in Northern European reptiles. Herpetological Journal 18, 32 -39.
    • Karadenız, E., Gu¨ rkan, E. & Koyun, M. (2005) Metazoan parasites of the marsh frog (Rana ridibunda Pallas 1771; Anura) collected from the different regions in Turkey. Turkiye Parazitoloji Dergisi 29, 135 - 139.
    • Kirin, D. (2002) New records of the helminth fauna from grass snake, Natrix natrix L., 1758 and dice snake, Natrix tessellata Laurenti, 1768 (Colubridae: Reptilia) in South Bulgaria. Acta Zoologica Bulgarica 54, 49 - 53.
    • Kirin, D. & Buchvaov, G. (2002) Biodiversity of the helminth communities of acaudated amphibians (Amphibia - Ecaudata) from Bistritsa riverside (Gotse Delchev region). Experimental Pathology and Parasitology 5, 13 - 16.
    • Kumar, S., Tamura, K. & Masatoshi, N. (2004) MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Briefings in Bioinformatics 5, 150 - 163.
    • Kuzmin, Y., Tkach, V.V. & Snyder, S.D. (2003) The nematode genus Rhabdias (Nematoda: Rhabdiasidae) from amphibians and reptiles of the Nearctic. Comparative Parasitology 70, 101 - 114.
    • Mihalca, A.D., Gherman, C., Ghira, I. & Cozma, V. (2007) Helminth parasites of reptiles (Reptilia) in Romania. Parasitology Research 101, 491 - 492.
    • Nielsen, M.K., Peterson, D.S., Monrad, J., Thamsborg, S.M., Olsen, S.N. & Kaplan, R.M. (2008) Detection and semi-quantification of Strongylus vulgaris DNA in equine faeces by real-time quantitative PCR. International Journal for Parasitology 38, 443 - 453.
    • Ponton, F., Lebarbenchon, C., Lefe`vre, T., Biron, D.G., Duneau, D., Hughes, D.P. & Thomas, F. (2010) Parasite survives predation on its host. Nature 440, 756.
    • Ryzhikov, K.M., Sharpilo, V.P. & Shevechenko, N.N. (1980) Helminths of amphibians of the fauna of the USSR. Moscow, Russia, Izdatel'stov Nauka.
    • Saeed, I., Al-Barwari, S.E. & Al-Harmni, K.I. (2007) Metazoan parasitological research of some Iraqi amphibians. Tu¨ rkiye Parazitoloji Dergisi 31, 337 - 345.
    • Saglam, N. & Arikan, H. (2006) Endohelminth fauna of the marsh frog Rana ridibunda from Lake Hazar, Turkey. Diseases of Aquatic Organisms 72, 253 - 260.
    • Schulte, F. & Poinarj, G.O. (1991) Description of Rhabditis (Rhabditoides) regina n. sp. (Nematoda: Rhabditidae) from the body cavity of beetle larvae in Guatemala. Revue Ne´matology 14, 151 - 156.
    • Sharpilo, V.P. (1974) A new member of the Genus Neoxysomatium Nematoda Cosmocercidae a parasite of slow worms of the Caucasus. Parazitologiya 8, 112 - 115.
    • Shimalov, V.V. & Shimalov, V.T. (2000) Helminth fauna of snakes (Reptilia, Serpentes) in Belorussian Polesye. Parasitology Research 86, 340 -341.
    • Shimalov, V.V., Shimalov, V.T. & Shimalov, A.V. (2000) Helminth fauna of lizards (Reptilia, Sauria) in the southern part of Belarus. Parasitology Research 86, 343.
    • Tkach, V.V., Kuzmin, Y. & Pulis, E.E. (2006) A new species of Rhabdias from lungs of the wood frog, Rana sylvatica, in North America: the last sibling of Rhabdias ranae? Journal of Parasitology 92, 631 - 636.
    • Vashetko, E.V. & Siddikov, B.H. (1999) The effect of the ecology of toads on the distribution of helminths. Turkish Journal of Zoology 23, 107 - 110.
    • Yamaguti, S. (1961) System Helminthum. Volume III: The nematodes of vertebrates. pp. 99- 100. New York, Interscience Publishers.
    • Wilson, M.J., Glen, D.M. & George, S.K. (1993) The rhabditid nematode Phasmarhabditis hermaphrodita as a potential biological control agent for slugs. Biocontrol Science & Technology 3, 503 - 511.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article