LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Publisher: Springer Verlag
Languages: English
Types: Article
Subjects: predator recognition, guard behaviour, QH301, [SDV.BA.ZI] Life Sciences [q-bio]/Animal biology/Invertebrate Zoology, [SDV.BID] Life Sciences [q-bio]/Biodiversity, [SDV.SA.SPA] Life Sciences [q-bio]/Agricultural sciences/Animal production studies, Apis mellifera, olfactory cue, QL, [SDV.EE] Life Sciences [q-bio]/Ecology, environment, common wasp Vespula vulgaris
International audience; Guard honey bees patrol the entrance to the nest and are thought to recognise nestmates by cuticular hydrocarbons. We aimed to determine whether honey bee guards can recognise predatory common wasps Vespula vulgaris and nestmates by olfactory cues. Odours were transferred between both honey bees and wasps and the responses of guards to controlled introductions monitored. When controlling for the species of introduced insect, the transferred odour was a predictor of aggressive attacks on both bees and wasps. Carriers of incongruous, allospecific odours were antennated by more guards than carriers of conspecific odours. Olfactory cues were, therefore, transferred and guards responded not only to odour per se but also odour incongruity. Olfactory cues may therefore be important in predator recognition by honey bee guards.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Bagnères A.G., Lorenzi M.C., Dusticier G., Turillazzi S., Clément J.L. (1996) Chemical usurpation of a nest by paper wasp parasites, Science 272, 889- 892.
    • Bowden R.M., Willamson S., Breed M.D. (1998) Floral oils: their effect on nestmate recognition in the honeybee, Apis mellifera, Insectes Soc. 45, 209- 214.
    • Breed M.D. (1983) Nestmate recognition in honey bees, Anim. Behav. 31, 86-91.
    • Breed M.D., Stiller T.M. (1992) Honey-bee, Apis mellifera, nestmate discrimination - hydrocarbon effects and the evolutionary implications of comb choice, Anim. Behav. 43, 875-883.
    • Breed M.D., Williams K.R., Fewell J.H. (1988a) Comb wax mediates the acquisition of nest-mate recognition cues in honey bees, Proc. Natl. Acad. Sci. USA 85, 8766-8769.
    • Breed M.D., Stiller T.M., Moor M.J. (1988b) The ontogeny of kin discrimination cues in the honey bee, Apis mellifera, Behav. Genet. 18, 439-448.
    • Breed M.D., Garry M.F., Pearce A.N., Hibbard B.E., Bjostad L.B., Page R.E. (1995) The role of wax comb in honey bee nestmate recognition, Anim. Behav. 50, 489-496.
    • Breed M.D., Leger E.A., Pearce A.N., Wang Y.J. (1998) Comb wax effects on the ontogeny of honey bee nestmate recognition, Anim. Behav. 55, 13-20.
    • Butler C.G., Free J.B. (1952) The behaviour of worker honeybees at the hive entrance, Behavior 4, 263- 291.
    • Butts D.P., Espelie K.E. (1995) Role of nest-paper hydrocarbons in nestmate recognition of Dolichovespula maculata (L.) workers (Hymenoptera, Vespidae), Ethology, 100, 39-49.
    • Crawley M.J. (1993) GLIM for Ecologists, Blackwell Scientific Publications, Oxford.
    • de Jong D. (1990) Insects: Hymenoptera (Ants, Wasps, and Bees), in: Morse R.A., Nowogrodzki R. (Eds.) Honey Bee Pests, Predators, and Diseases, 2nd edn. Cornell University Press, Ithaca, New York, pp. 135-155.
    • Downs S.G., Ratnieks F.L.W. (1999) Recognition of conspecifics by honeybee guards uses nonheritable cues acquired in the adult stage, Anim. Behav. 58, 643-648.
    • Downs S.G., Ratnieks F.L.W. (2000) Adaptive shifts in honey bee (Apis mellifera L.) guarding behavior support predictions of the acceptance threshold model, Behav. Ecol. 11, 326-333.
    • Downs S.G., Ratnieks F.L.W., Badcock N.S., Mynott A. (2001) Honeybee guards do not use foodderived odors to recognize non-nest mates: a test of the Odor Convergence Hypothesis, Behav. Ecol. 12, 47-50.
    • Downs S.G., Ratnieks F.L.W., Jefferies S.L., Rigby H.E. (2000) The role of floral oils in the nestmate recognition system of honey bees (Apis mellifera L.), Apidologie 31, 357-365.
    • Finney D.J. (1973) Transformation of observations for statistical analysis, Cotton Growing Rev. 50, 1-14.
    • Francis B.R., Blanton W.E., Littlefield J.L., Nunamaker R.A. (1989) Hydrocarbons of the cuticle and hemolymph of the adult honey bee (Hymenoptera, Apidae), Ann. Entomol. Soc. Am. 82, 486-494.
    • Free J.B. (1954) The behaviour of robber honeybees, Behavior 7, 233-240.
    • Frisch K. von (1967) The Dance Language and Orientation of Bees, Harvard University Press, Cambridge, Massachusetts.
    • Futuyama D.J. (1986) The Evolution of Interactions Among Species, in: Evolutionary Biology, 2nd ed., Sinauer Associates Inc., Sunderland, Massachusetts, pp. 482-504.
    • Getz W.M., Smith K.B. (1983) Genetic kin recognition - honey bees discriminate between full and half Sisters, Nature 302, 147-148.
    • Giurfa M., Nunez J., Chittka L., Menzel R. (1995) Color preferences of flower-naïve honeybees, J. Comp. Physiol. A 177, 247-259.
    • Lunau K., Maier E.J. (1995) Innate color preferences of flower visitors, J. Comp. Physiol. A 177, 1-19.
    • Maddess T., Davey M.P, Yang E.C. (1999) Discrimination of complex textures by bees, J. Comp. Physiol. A 184, 107-117.
    • Matsuura M., Sakagami S.F. (1973) A bionomic sketch of the giant hornet, Vespa mandarinia, a serious pest for Japanese agriculture. J. Fac. Sci., Hokkaido Univ. Ser. VI, Zool. 19, 125-162.
    • Menzel R., Erber J., Masuhr T. (1973) Learning and memory in the honey bee, in: Browne L.B. (Ed.), Experimental Analysis of Insect Behaviour, Springer-Verlag, New York, pp. 195-217.
    • Moritz R.F.A., Crewe R.M. (1988) Chemical signals of queens in kin recognition of honeybees, Apis mellifera L., J. Comp. Physiol. A 164, 83-89.
    • Morse R.A. (1966) Honeybee colony defense at low temperatures, J. Econ. Entomol. 59, 1091-1093.
    • Morse R.A., Shearer D.A., Boch R., Benton A.W. (1967) Observations on alarm substances in the genus Apis, J. Apic. Res. 6, 113-118.
    • Ono M., Igarashi T., Ohno E., Sasaki M. (1995) Unusual thermal defense by a honeybee against mass attack by hornets, Nature 377, 334-336.
    • Singer T.L. (1998) Roles of hydrocarbons in the recognition systems of insects, Am. Zool. 38, 394- 405.
    • Singer T.L., Espelie K.E. (1992) Social wasps use nest paper hydrocarbons for nestmate recognition, Anim. Behav. 44, 63-68.
    • Singer T.L., Espelie K.E. (1996) Nest surface hydrocarbons facilitate nestmate recognition for the social wasp, Polistes metricus Say (Hymenoptera: Vespidae), J. Insect Behav. 9, 857-870.
    • Sledge M.F., Dani F.R., Cervo R., Dapporto L., Turillazzi S. (2001) Recognition of social parasites as nest-mates: adoption of colony-specific host cuticular odours by the paper wasp parasite Polistes sulcifer, Proc. R. Soc. London B 268, 2253-2260.
    • Spradbery J.P. (1973) Wasps: an account of the biology and natural history of solitary and social wasps, Sidgwick and Jackson, London.
    • Winston M.L. (1987) The Biology of the Honey Bee, Harvard University Press, Cambridge, Massachusetts.
  • No related research data.
  • No similar publications.