You have just completed your registration at OpenAire.
Before you can login to the site, you will need to activate your account.
An e-mail will be sent to you with the proper instructions.
Important!
Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version
of the site upon release.
We review recent results on new physical models constructed as -symmetrical deformations or extensions of different types of integrable models. We present non-Hermitian versions of quantum spin chains, multi-particle systems of Calogero–Moser–Sutherland type and nonlinear integrable field equations of Korteweg–de Vries type. The quantum spin chain discussed is related to the first example in the series of the non-unitary models of minimal conformal field theories. For the Calogero–Moser–Sutherland models, we provide three alternative deformations: a complex extension for models related to all types of Coxeter/Weyl groups; models describing the evolution of poles in constrained real-valued field equations of nonlinear integrable systems; and genuine deformations based on antilinearly invariant deformed root systems. Deformations of complex nonlinear integrable field equations of Korteweg–de Vries type are studied with regard to different kinds of -symmetrical scenarios. A reduction to simple complex quantum mechanical models currently under discussion is presented.
[1] C. M. Bender and S. Boettcher, Real Spectra in Non-Hermitian Hamiltonians Having PT Symmetry, Phys. Rev. Lett. 80, 5243-5246 (1998).
[2] F. G. Scholtz, H. B. Geyer, and F. Hahne, Quasi-Hermitian Operators in Quantum Mechanics and the Variational Principle, Ann. Phys. 213, 74-101 (1992).
[3] C. M. Bender, D. C. Brody, and H. F. Jones, Complex Extension of Quantum Mechanics, Phys. Rev. Lett. 89, 270401(4) (2002).
[4] A. Mostafazadeh, Pseudo-Hermiticity versus PT symmetry. The necessary condition for the reality of the spectrum, J. Math. Phys. 43, 205-214 (2002).
[11] A. Mostafazadeh, Metric operators for quasi-Hermitian Hamiltonians and symmetries of equivalent Hermitian Hamiltonians, J. Phys. A41, 055304 (2008).
[12] E. Wigner, Normal form of antiunitary operators, J. Math. Phys. 1, 409-413 (1960).
[13] J. Dieudonné, Quasi-hermitian operators, Proceedings of the International Symposium on Linear Spaces, Jerusalem 1960, Pergamon, Oxford , 115-122 (1961).
[14] J. P. Williams, Operators similar to their adjoints, Proc. American. Math. Soc. 20, 121-123 (1969).
[15] M. Froissart, Covariant formalism of a field with indefinite metric, Il Nuovo Cimento 14, 197-204 (1959).
[16] E. C. G. Sudarshan, Quantum Mechanical Systems with Indefinite Metric. I, Phys. Rev. 123, 2183-2193 (1961).
[17] C. M. Bender, and S. Kuzhel, Unbounded C-symmetries and their nonuniqueness, arXix:1207.1176.
[20] G. von Gehlen, Critical and off-critical conformal analysis of the Ising quantum chain in an imaginary field, J. Phys. A24, 5371-5399 (1991).
[21] J. L. Cardy, Conformal invariance and the Yang-Lee edge singularity in two-dimension, Phys. Rev. Lett. 54, 1354-1356 (1985).
[22] A. A. Belavin, A. M. Polyakov, and A. B. Zamolodchikov, Infinite conformal symmetry in two-dimensional quantum field theory, Nucl. Phys. B241, 333-380 (1984).
[26] C. M. Bender and T. T. Wu, Anharmonic Oscillator, Phys. Rev. 184, 1231-1260 (1969).
[27] J. von Neuman and E. Wigner, Über merkwürdige diskrete Eigenwerte. Über das Verhalten von Eigenwerten bei adiabatischen Prozessen, Zeit. der Physik 30, 467-470 (1929).
[28] F. J. Dyson, Thermodynamic Behavior of an Ideal Ferromagnet, Phys. Rev. 102, 1230-1244 (1956).
[29] A. G. Bytsko, Non-Hermitian spin chains with inhomogeneous coupling, Phys. Rev. B 22N3, 80-106 (2010).
[30] G. L. Giorgi, Spontaneous PT symmetry breaking and quantum phase transitions in dimerized spin chains, Phys. Rev. B 82, 052404 (2010).
[33] B. Basu-Mallick, T. Bhattacharyya, A. Kundu, and B. P. Mandal, Bound and scattering states of extended Calogero model with an additional PT invariant interaction, Czech. J. Phys. 54, 5-12 (2004).
[34] B. Basu-Mallick, T. Bhattacharyya, and B. P. Mandal, Phase shift analysis of PT-symmetric nonhermitian extension of AN−1 Calogero model without confining interaction, Mod. Phys. Lett. A20, 543-552 (2005).
[35] M. A. Olshanetsky and A. M. Perelomov, Classical integrable finite dimensional systems related to Lie algebras, Phys. Rept. 71, 313-400 (1981).
[36] H. H. Chen, L. Y. C., and N. R. Pereira, Algebraic internal wave solutions and the integrable Calogero-Moser-Sutherland N -body problem, Phys. Fluids 22, 187-188 (1979).
[37] J. Feinberg, talk at PHHQP workshop VI, City University London, (2007).
[38] H. Airault, H. P. McKean, and J. Moser, Rational and Elliptic Solutions of the Korteweg-de Vries Equation and a Related Many-Body Problem, Comm. pure appl. Math. 80, 95-148 (1977).
[41] A. Fring and M. Znojil, PT -Symmetric deformations of Calogero models, J. Phys. A40, 194010(17) (2008).
[42] A. Fring and M. Smith, Antilinear deformations of Coxeter groups, an application to Calogero models, J. Phys. A43, 325201 (2010).
[43] A. Fring and M. Smith, PT invariant complex E(8) root spaces, Int. J. Theor. Phys. 50, 974-981 (2011).
[44] A. Fring and M. Smith, Non-Hermitian multi-particle systems from complex root spaces, J. Phys. A45, 085203 (2012).
[45] D. J. Korteweg and deVries G., On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves, Phil. Mag. 39, 422-443 (1895).
[46] C. M. Bender, D. C. Brody, J. Chen, and E. Furlan, PT -symmetric extension of the Korteweg-de Vries equation, J. Phys. A40, F153-F160 (2007).
[49] A. G. Anderson, C. M. Bender, and U. I. Morone, Periodic orbits for classical particles having complex energy, Phys. Lett. A375, 3399-3404 (2011).