Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Campbell, G. E.; Walker, R. T.; Abdrakhmatov, K.; Schwenninger, JL.; Jackson, J.; Elliott, J. R.; Copley, Alex
Publisher: Journal of Geophysical Research: Solid Earth
Languages: English
Types: Article
Subjects: sub-02
The Dzhungarian strike-slip fault of Central Asia is one of a series of long, NW-SE right-lateral strike-slip faults that are characteristic of the northern Tien Shan region and extends over 300 km from the high mountains into the Kazakh Platform. Our field-based and satellite observations reveal that the Dzhungarian fault can be characterized by three 100 km long sections based on variation in strike direction. Through morphological analysis of offset streams and alluvial fans, and through optically stimulated luminescence dating, we find that the Dzhungarian fault has a minimum average late Quaternary slip rate of 2.2 ± 0.8 mm/yr and accommodates N-S shortening related to the India-Eurasia collision. This shortening may also be partly accommodated by counterclockwise rotation about a vertical axis. Evidence for a possible paleo-earthquake rupture indicates that earthquakes up to at least Mw 7 can be associated with just the partitioned component of reverse slip on segments of the central section of the fault up to 30 km long. An event rupturing longer sections of the Dzhungarian fault has the potential to generate greater magnitude earthquakes (Mw 8); however, long time periods (e.g., thousands of years) are expected in order to accumulate enough strain to generate such earthquakes. We thank the Royal Society International Travel Grant, Mike Coward Fund of the Geological Society of London, Percy Sladen Fund of the Linnean Society, The Gilchrist Educational Trust, and the Earth and Space Foundation for their support in funding this project. GEC’s doctoral studentship is funded by the National Environmental Research Council through NCEO, COMET, and the NERC-ESRC funded Earthquakes without Frontiers (EWF) Project. RTW is supported by a University Research Fellowship awarded by the Royal Society. This is the final version of the article, originally published in the Journal of Geophysical Research: Solid Earth. It is also available from Wiley at http://onlinelibrary.wiley.com/doi/10.1002/jgrb.50367/abstract. © 2013. American Geophysical Union
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Abdrakhmatov, K., K. D. Djanuzakov, and D. Delvaux (2002), Active tectonics and seismic hazard of the Issyk-Kul basin in the Kyrgyz TianShan. Lake Issyk-Kul: Its natural environment, in Lake Issyk-Kul: Its Natural Environment, vol. 13, edited by J. Klerkx and B. Imanackunov, pp. 147-160, NATO Science Series, Kluwer, Dordrecht.
    • Abdrakhmatov, K., R. Weldon, S. Thompson, D. W. Burbank, C. Rubin, M. Miller, and P. Molnar (2001), Onset, style and current rate of shortening in the central Tien Shan, Kyrgyz Republic, Geol. Geophys., 42, 1585-1609.
    • Abdrakhmatov, K., et al. (1996), Relatively recent construction of the Tien Shan inferred from GPS measurements of present-day crustal deformation rates, Nature, 384, 450-453.
    • Adamiec, G., and M. Aitken (1998), Dose-rate conversion factors: New data, Ancient TL, 16 (2), 37-50.
    • Avouac, J. P., P. Tapponnier, M. Bai, H. You, and G. Wang (1993), Active thrusting and folding along the Northern Tien Shan and Late Cenozoic rotation of the Tarim relative to Dzungaria and Kazakhstan, J. Geophys. Res., 98 (B4), 6755-6804.
    • Baljinnyam, I., et al. (1993), Ruptures of Major Earthquakes and Active Deformation in Mongolia and its Surroundings, Geological Society of America Memoir 181, Boulder, Colorado.
    • Banerjee, D., A. S. Murray, L. Bøtter-Jensen, and A. Lang (2001), Equivalent dose estimation using a single aliquot of polymineral fine grains, Radiat. Meas., 33 (1), 73-94.
    • Bayasgalan, A., J. Jackson, J. F. Ritz, and S. Carretier (1999a), Field examples of strike-slip fault terminations in Mongolia and their tectonic significance, Tectonics, 18 (3), 394-411.
    • Bayasgalan, A., J. Jackson, J. F. Ritz, and S. Carretier (1999b), 'Forebergs', flower structures, and the development of large intra-continental strikeslip faults: The Gurvan Bogd fault system in Mongolia, J. Struct. Geol., 21 (10), 1285-1302.
    • Bayasgalan, A., J. Jackson, and D. McKenzie (2005), Lithosphere rheology and active tectonics in Mongolia: Relations between earthquake source parameters, gravity and GPS measurements, Geophys. J. Int., 163, 1151-1179, doi:10.1111/j.1365-246X.2005.02764.x.
    • Berberian, M., J. A. Jackson, M. Qorashi, M. Talebian, M. Khatib, and K. Priestley (2000), The 1994 Sefidabeh earthquakes in eastern Iran: Blind thrusting and bedding-plane slip on a growing anticline, and active tectonics of the Sistan suture zone, Geophys. J. Int., 142 (2), 283-299.
    • Bogdanovich, K. I., I. M. Kark, B. Y. Korol'kov, and D. I. Mushketov (1914), Earthquake in northern district of Tien Shan, 22 December 1911 (4 January 1911), paper presented at Geology Committee, New series, 89, St. Petersburg (in Russian, extended abstract in Frence).
    • Bøtter-Jensen, L. (1997), Luminescence techniques: Instrumentation and methods, Radiat. Meas., 27 (5-6), 749-768.
    • Bøtter-Jensen, L., E. Bulur, G. A. T. Duller, and A. S. Murray (2000), Advances in luminescence instrument systems, Radiat. Meas., 32 (5), 523-528.
    • Buckman, S., and J. C. Aitchison (2004), Tectonic evolution of Palaeozoic terranes in West Junggar, Xinjiang, Northwest China, in Aspects of the Tectonic Evolution of China, Special Publ. 226, edited by J. G. Malpas et al., pp. 101-129, Geological Society, London.
    • Bullen, M. E., D. W. Burbank, J. I. Garver, and K. Abdrakhmatov (2001), Late Cenozoic tectonic evolution of the northwestern Tien Shan: New age estimates for the initiation of mountain building, Geol. Soc. Am. Bull., 113 (12), 1544-1559.
    • Bullen, M. E., D. W. Burbank, and J. I. Garver (2003), Building the Northern Tien Shan: Integrated thermal, structural, and topographic constraints, J. Geol., 111 (2), 149-165.
    • Burtman, V. S. (1975), Structural geology of Variscan Tien Shan, USSR, Am. J. Sci., 275, 157-186.
    • Burtman, V. S., S. F. Skobelev, and P. Molnar (1996), Late Cenozoic slip on the Talas-Ferghana fault, the Tien Shan, central Asia, Geol. Soc. Am. Bull., 108 (8), 1004-1021.
    • Buslov, M. M., J. Klerkx, K. Abdrakhmatov, D. Delvaux, V. Y. Batalev, O. A. Kuchai, B. Dehandschutter, and A. Muraliev (2003), Recent strikeslip deformation of the northern Tien Shan, in Intraplate Strike-Slip Deformation Belts, Special Publications 210, edited by F. Stori, R. E. Holdsworth, and F. Salvini, pp. 53-64, Geological Society, London.
    • Cobbold, P. R., and P. Davy (1988), Indentation tectonics in nature and experiments, 2, Central Asia, Bull. Geol. Inst. Univ. Uppsala, 14, 129-141.
    • Cowgill, E. (2007), Impact of riser reconstructions on estimation of secular variation in rates of strike-slip faulting: Revisiting the Cherchen River site along the Altyn Tagh Fault, NW China, Earth Planet. Sci. Lett., 254, 239-255.
    • Davy, P., and P. R. Cobbold (1988), Indentation tectonics in nature and experiment. 1. Experiment scaled for gravity, Bull. Geol. Inst Univ. Uppsala, 14, 129-141.
    • De Grave, J., M. M. Buslov, and P. van den Haute (2007), Distant effects of India-Eurasia convergence and Mesozoic intracontinental deformation in Central Asia: Constraints from apatite fission-track thermochronology, J. Asian Earth Sci., 29, 188-204.
    • Delvaux, D., K. E. Abdrakhmatov, I. N. Lemzin, and A. L. Strom (2001), Landslide and surface breaks of the 1911 M 8.2 Kemin Earthquake, Landslides, 42 (10), 1583-1592.
    • DeMets, C., R. G. Gordon, D. F. Argus, and S. Stein (1990), Current plate motions, Geophys. J. Int., 101 (2), 425-478.
    • Engdahl, E. R., R. van der Hilst, and B. Raymond (1998), Global teleseismic earthquake relocation with improved travel times and procedures for depth determination, Bull. Seismol. Soc. Am., 88, 722-743.
    • England, P., and P. Molnar (1997), The field of crustal velocity in Asia calculated from Quaternary rates of slip on faults, Geophys. J. Int., 130 (3), 551-582.
    • Florensov, N. A., and V. P. Solonenko (eds.) (1963), The Gobi-Altay Earthquake (in Russian), English Translation, Israel Program for Scientific Translation, Jerusalem, 1965, pp. 391-424, U.S. Dept. of Commerce, Washinton, D.C.
    • Ghose, S., R. J. Mellors, A. M. Korjenkov, M. W. Hamburger, T. L. Pavlis, G. L. Pavlis, M. Omuraliev, E. Mamyrov, and A. R. Muraliev (1997), The Ms = 7.3 1992 Suusamyr, Kyrgyzstan, earthquake in the Tien Shan: 2. Aftershock focal mechanisms and surface deformation, Bul. Seismol. Soc. Am., 87 (1), 23-38.
    • Glorie, S., J. De Grave, M. M. Buslov, M. A. Elburg, D. F. Stockli, A. Gerdes, and P. Van den haute (2010), Multi-method chronometric constraints on the evolution of the Northern Kyrgyz Tien Shan granitoids (Central Asian Orogenic Belt): From emplacement to exhumation, J. Asian Earth Sci., 38, 131-146.
    • Hay, M. B. (1888), The earthquakes of May and June, 1887, in the Verny (Vernoe) District, Russian Turkestan, and their consequences, paper presented at Royal Geographical Society and Monthly Record of Geography, pages 638-646. JSTOR.
    • Hendrix, M. S., S. A. Graham, A. R. Carroll, E. R. Sobel, C. L. Mcnight, B. J. Schulein, and Z. Wang (1992), Sedimentary record and climatic implications of recurrent deformation in the Tian Shan: Evidence from Mesozoic strata of the North Tarim, South Junggar, and Turpan basins, Northwest China, Geol. Soc. Am. Bull., 104 (1), 53-79.
    • Hollingsworth, J., J. Jackson, R. Walker, M. Reza Gheitanchi, and M. Javad Bolourchi (2006), Strike-slip faulting, rotation, and along-strike elongation in the Kopeh Dagh mountains, NE Iran, Geophys. J. Int., 166 (3), 1161-1177.
    • Jolivet, L., P. Davy, and P. R. Cobbold (1990), Right-lateral shear along the Northwest pacific margin and the India-Eurasia collision, Tectonics, 9, 1409-1419.
    • Kondorskaya, N. V., and N. V. Shebalin (1977), New Catalog of Strong Earthquakes in the USSR from Ancient Times to 1975 (in Russian), vol. 535, Nauka, Moscow.
    • Korjenkov, A. M., I. E. Povolotskaya, and E. Mamyrov (2007), Morphologic expression of Quaternary deformation in the Northwestern foothills of the Ysyk-Köl basin, Tien Shan, Geotectonics, 41, 130-148.
    • Korjenkov, A. M., A. V. Bobrovskii, and E. M. Mamyrov (2010), Evidence for strong paleoearthquakes along the Talas-Fergana Fault near the KökBel Pass, Kyrgyzstan, Geotectonics, 44, 262-270.
    • Kuchay, V. K. (1969), Results of the repeated studies of ground deformations in the epicentral area of the Kebi earthquake (in Russian), Geol. Geophys., 8, 101-108.
    • Mejdahl, V. (1979), Thermoluminescence dating: Beta-dose attenuation in quartz grains, Archaeometry, 21 (1), 61-72.
    • Mellors, R. J., F. L. Vernon, G. L. Pavlis, G. A. Abers, M. W. Hamburger, S. Ghose, and B. Iliasov (1997), The Ms = 7.3 1992 Suusamyr, Kyrgyzstan, earthquake: 1. Constraints on fault geometry and source parameters based on aftershocks and body-wave modeling, Bull. Seismol. Soc. Am., 87 (1), 11-22.
    • Mohadjer, S., et al. (2010), Partitioning of India-Eurasia convergence in the Pamir-Hindu Kush from GPS measurements, Geophys. Res. Lett., 37, L04305, doi:10.1029/2009GL041737.
    • Molnar, P., and K. E. Dayem (2010), Major intracontinental strike-slip faults and contrasts in lithospheric strength, Geosphere, 6, 444-467.
    • Molnar, P., and S. Ghose (2000), Seismic moments of major earthquakes and the rate of shortening across the Tien Shan, Geophys. Res. Lett., 27 (16), 2377-2380.
    • Murray, A. S., and A. G. Wintle (2000), Luminescence dating of quartz using an improved single-aliquot regenerative-dose protocol, Radiat. Meas., 32 (1), 57-73.
    • Mushketov, I. V. (1890), Vemy Earthquake 28 May (9 June) 1887 [in Russian], p. 154, Commission of the Geology Committee, St. Petersburg.
    • Mushketov, I. V., and A. S. Survorin (1891), Materials for the Study of Earthquakes of Russia (in Russian), p. 62, Commission of the Geology Committee, St. Petersburg, Russia.
    • Oskin, M. E., and D. Burbank (2007), Transient landscape evolution of basement-cored uplifts: Example of the Kyrgyz Range, Tian Shan, J. Geophys. Res., 112, F03S03, doi:10.1029/2006JF000563.
    • Prescott, J. R., and J. T. Hutton (1994), Cosmic ray contributions to dose rates for luminescence and ESR dating: Large depths and long-term time variations, Radiat. Meas., 23(2), 497-500.
    • Reigber, C., G. W. Michel, R. Galas, D. Angermann, J. Klotz, J. Y. Chen, A. Papschev, R. Arslanov, V. E. Tzurkov, and M. C. Ishanov (2001a), New space geodetic constraints on the distribution of deformation in Central Asia, Earth Planet. Sci. Lett., 191(1-2), 157-165, doi:10.1016/S0012- 821X(01)00414-9.
    • Reigber, C., G. W. Michel, R. Galas, D. Angermann, J. Klotz, J. Y. Chen, A. Papschev, R. Arslanov, V. E. Tzurkov, and M. C. Ishanov (2001b), New space geodetic constraints on the distribution of deformation in Central Asia, Earth Planet. Sci. Lett., 191(1), 157-165.
    • Ritz, J-F., E. T. Brown, D. L. Bourles, H. Philip, A. Schlupp, G. M. Raisbeck, F. Yiou, and B. Enkhtuvshin (1995), Slip rates along active faults estimated with cosmic-ray-exposure dates: Application to the Bogd fault, Gobi Altai, Mongolia, Geology, 23, 1019-1022.
    • Scholz, C. H. (1982), Scaling laws for large earthquakes: Consequences for physical models, Bull. Seismol. Soc. Am., 72(1), 1-14.
    • Selander, J., M. Oskin, C. Ormukov, and K. Abdrakhmatov (2012), Inherited strike-slip faults as an origin for basement-cored uplifts: Example of the Kungey and Zailiskey ranges, northern Tian Shan, Tectonics, 31(4), TC4026, doi:10.1029/2011TC003002.
    • Shen, Z.-K., M. Wang, Y. Li, D. D. Jackson, A. Yin, D. Dong, and P. Fang (2001), Crustal deformation along the Altyn Tagh fault system, western China, from GPS, J. Geophys. Res., 106(B12), 30,607-30,621, doi:10.1029/2001JB000349.
    • Shen, J., Y.-P. Wang, Y.-Z. Li, H. Jiang, and Z.-Y. Xiang (2003), The China Xinjiang Tianshan Boa fracture Late Quaternary dextral strike-slip motion feature, Seismol. Geol., 25(2), 183-194.
    • Simpson, D. W., and M. W. Hamburger (1981), Tectonics and seismicity of the Toktogul reservoir region, Kirgizia, USSR, J. Geophys. Res., 86(B1), 345-358.
    • Sloan, R. A., J. A. Jackson, D. McKenzie, and K. Priestley (2011), Earthquake depth distributions in central Asia, and their relations with lithosphere thickness, shortening and extension, Geophys. J. Int., 185(1), 1-29, doi:10.1111/j.1365-246X.2010.04882.x.
    • Sobel, E. R., M. Oskin, D. Burbank, and A. Mikolaichuk (2006), Exhumation of basement-cored uplifts: Example of the Kyrgyz Range quantified with apatite fission track thermochronology, Tectonics, 25, TC2008, doi:10.1029/2005TC001809.
    • Suvorov, A. I. (1963), Main faults of Kazakhstan and Central Asia (in Russian), in Faults and Horizontal Movements of the Earth's Crust, Tr. Geol. Inst., 80, 173-237.
    • Suvorov, A. I. (1973), Deep Faults of Platforms and Geosynclines (in Russian), p. 213, Nedra, Moscow, Russia.
    • Tapponnier, P., and P. Molnar (1979), Active faulting and cenozoic tectonics of the Tien Shan, Mongolia, and Baykal regions, J. Geophys. Res., 84, 3425-3459, doi:10.1029/JB084iB07p03425.
    • Tapponnier, P., G. Peltzer, A. Y. Le Dain, R. Armijo, and P. R. Cobbold (1982), Propagating extrasing in Asia: New insights from simple experiments with plasticine, Geology, 10, 611-616.
    • Thomas, J. C., P. R. Cobbold, A. Wright, and D. Gapais (1996), Cenozoic Tectonics of the Tadzhik Depression, Central Asia, World and Regional Geology, pp. 191-207, Cambridge Univ. Press, New York.
    • Thompson, S. C., R. J. Weldon, C. M. Rubin, K. Abdrakhmatov, P. Molnar, and G. W. Berger (2002), Late Quaternary slip rates across the central Tien Shan, Kyrgyzstan, central Asia, J. Geophys. Res., 107, 2203, doi:10.1029/2001JB000596.
    • Trifonov, V. G. (1978), Late Quaternary tectonic movements of western and central Asia, Geol. Soc. Am. Bull., 89(7), 1059-1072.
    • Trifonov, V. G. (2004), Active faults in Eurasia: General remarks, Tectonophysics, 380, 123-130.
    • Vassallo, R., J.-F. Ritz, R. Braucher, and S. Carretier (2005), Dating faulted alluvial fans with cosmogenic 10Be in the Gurvan Bogd mountain range (Gobi-Altay, Mongolia): Climatic and tectonic implications, Terra Nova, 17, 278-285.
    • Voitovich, V. S. (1969), Nature of the Dzungarian deep fault (in Russian), Tr. Geol. Inst., 183, 189.
    • Walker, R., J. Jackson, and C. Baker (2004), Active faulting and seismicity of the Dasht-e-Bayaz region, Eastern Iran, Geophys. J. Int., 157, 265-282.
    • Windley, B. F., M. B. Allen, C. Zhang, Z. Y. Zhao, and G. R. Wang (1990), Paleozoic accretion and Cenozoic redeformation of the Chinese Tien Shan Range, central Asia, Geology, 18(2), 128-131.
    • Wintle, A. G., and A. S. Murray (2006), A review of quartz optically stimulated luminescence characteristics and their relevance in single-aliquot regeneration dating protocols, Radiat. Meas., 41, 369-391.
    • Yang, S. M., J. Li, and Q. Wang (2008), The deformation pattern and fault rate in the Tianshan Mountains inferred from GPS observations, Sci. China. Ser. D, 51, 1064-1080.
    • Zimmerman, D. W. (1971), Thermoluminescent dating using fine grains from pottery, Archaeometry, 13(1), 29-52.
    • Zubovich, A. V., et al. (2010), GPS velocity field for the Tien Shan and surrounding regions, Tectonics, 29, TC6014, doi:10.1029/2010TC002772.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article