LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Publisher: Copernicus GmbH on behalf of the European Geosciences Union (EGU) and the American Geophysical Union (AGU)
Languages: English
Types: Article
Subjects:
The geomagnetic activity of the D(st) index is analyzed using wavelet transforms and it is shown that the D(st) index possesses properties associated with self-affine fractals. For example, the power spectral density obeys a power-law dependence on frequency, and therefore the D(st) index can be viewed as a self-affine fractal dynamic process. In fact, the behaviour of the D(st) index, with a Hurst exponent H≈0.5 (power-law exponent β≈2) at high frequency, is similar to that of Brownian motion. Therefore, the dynamical invariants of the D(st) index may be described by a potential Brownian motion model. Characterization of the geomagnetic activity has been studied by analysing the geomagnetic field using a wavelet covariance technique. The wavelet covariance exponent provides a direct effective measure of the strength of persistence of the D(st) index. One of the advantages of wavelet analysis is that many inherent problems encountered in Fourier transform methods, such as windowing and detrending, are not necessary.\ud
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Baker, D. N., Klimas, A. J., McPherron, R. L., and Buchner, J.: The evolution from weak to strong geomagnetic activity: an interpretation in terms of deterministic chaos, Geophys. Res. Lett., 17 (1), 41-44, 1990.
    • Boaghe, O. M., Balikhin, M. A., Billings, S. A., and Alleyne, H.: Identification of nonlinear processes in the magnetosphere dynamics and forecasting of Dst index, J. Geophys. Res. SpacePhys., 106 (A12), 30 047-30 066, 2001.
    • Burton, R. K., McPherron, R. L., and Russell, C. T.: An empirical relationship between interplanetary conditions and Dst , J. Geophys. Res., 80, 4204-4214, 1975.
    • Chen, M.W., Lyons, L.R., and Schulz, M. : Simulation of phasespace distributions of storm time proton ring current, J. Geophys. Res. Space-Phys., 99 (A4), 5745-5759, 1994.
    • Chui, C. K.: An Introduction to Wavelets, Academic Press, Boston, New Jersey, 1992.
    • Daubechies, I.: Ten Lectures on Wavelets, Society for Industrial and Applied Mathematics, Philaelphia, Pennsylvania, 1992.
    • Flandrin, P.: On the spectrum of fractional Brownian motions, IEEE Trans. Inform. Theory, 35 (1), 197-199, 1989.
    • Fleischmann, M., Tildesley, D. J. and Ball, R. C.: Fractals in the Nature Sciences-A Discussion, Princeton University Press, Princeton, 1990.
    • Goertz, C. K., Shan, L. H., and Smith, R. A.: Prediction of geomagnetic activity, J. Geophys. Res. Space-Phys., 98 (A5), 7673- 7684, 1993.
    • Goldberger, A. L.: Fractal mechanisms in the electrophysiology of heart. IEEE Engineering in Medicine and Biology Magzine, 11 (2),47-52, 1992.
    • Harrison, A.: Fractals in Chemistry, Oxford University Press, Oxford, 1995.
    • Hernandez, J. V., Tajima, T., and Horton, W.: Neural net forecasting for geomagnetic activity, Geophys. Res. Lett., 20 (23), 2707- 2710, 1993.
    • Holschneider, M.: On the wavelet transforms of fractal objects, Journal of Statistical Physics, 50 (5-6), 953-993, 1988.
    • Holschneider, M.: Wavelets: An Analysis Tool, Clarendon Press, Oxford, 1995.
    • Hongre, L., Sailhac, P., Alexandrescu, M., and Dubois, J.: Nonlinear and multifractal approaches of the geomagnetic field, Physics of the earth and planetary interiors, 110 (3-4), 157-190, 1997.
    • Klimas, A. J., Vassiliadis, D., Baker, D. N.: Data-derived analogues of the magnetospheric dynamics, J. Geophys. Res. Space-Phys., 102 (A12), 26 993-27 009, 1997.
    • Klimas, A. J., Vassiliadis, D., Baker, D. N.: Dst index prediction using data-derived analogues of the magnetospheric dynamics, J. Geophys. Res. Space-Phys., 103 (A9), 20 435-20 447, 1998.
    • Klimas, A. J., Vassiliadis, D., Baker, D. N., and Roberts, D. A.: The organized nonlinear dynamics of the magnetosphere, J. Geophys. Res. Space-Phys., 101 (A6), 13 089-13 113, 1996.
    • Klimas, A. J., Vassiliadis, D., Baker, D. N., and Valdivia J. A.: Data-derived analogues of the solar wind magnetosphere interaction. Physics and Chemistry of the Earth, Part C, 24 (1-3), 37-44, 1999.
    • Kumar, P. and Foufoula-Georgiou, E.: Wavelet analysis for geophysical applications, Reviews of Geophysics, 35 (4), 285-412, 1997.
    • Malamud, B. D. and Turcotte, D. L.: Self-affine time series, I: Generation and analyses, Advances in Geophysics, 40, 1-90, 1999a.
    • Malamud, B. D. and Turcotte, D. L.: Self-affine time series: measures of weak and strong persistence, Journal of Statistical Planning and Inference, 80 (1-2), 173-196, 1999b.
    • Mallat, S. G.: A theory for multiresolution signal decomposition: the wavelet representation, IEEE Trans. on Pattern analysis and machine intelligence, 11 (7), 674-693, 1989.
    • Mandelbrot, B. B.: The Fractal Geometry of Nature, W. H. Freeman and Company, San Francisco, New York, 1983.
    • McPherron, R. L.: Predicting the Ap index from past behaviour and solar wind velocity, Physics and Chemistry of the Earth, Part C, 24 (1-3), 45-56, 1999.
    • O'Brien, T. P. and McPherron, R. L.: An empirical phase space analysis of ring current dynamics: solar wind control of injection and decay, J. Geophys. Res. Space-Phys., 105 (A4), 7707-7719, 2000.
    • Peltier, R. F. and Levy-Vehel, J.: Multifractional Brownian motion: Definition and preliminary results, INRIA Report No. 2645, (http://www.inria.fr/rrrt/rr-2645.html), 1995.
    • Roberts, D. A., Baker, D. N, and Climas, A. J.: Indications of lowdimensionality in magnetosphere dynamics, Geophys. Res. Lett., 18 (2), 151-154, 1991.
    • Shan, L. H., Hansen, P., Goertz, C. K., and Smith, R. A.: Chaotic appearance of the AE index, Geophys. Res. Lett., 18 (2), 147- 150, 1991.
    • Sahimi, M.: Fractal-wavelet neural-network approach to characterization and upscaling of fractal reservoirs, Computers & Geosciences, 26 (8), 877-905, 2000.
    • Simonsen, I., Hansen, A., and Nes, O. M.: Determination of the Hurst exponent by use of wavelet transforms, Physical Review E, 58 (3), 2779-2787, 1998.
    • Takalo, J. and Timonen, J.: Characteristic time-scale of auroral electonjet data, Geophys. Res. Lett., 21 (7), 617-620, 1994a.
    • Takalo, J. and Timonen, J.: Properties of AE data and bicolored noise, Journal of Geographical Research, 99, 13 239-13 249, 1994b.
    • Takalo, J. and Timonen, J.: Neural network prediction of AE data, Geophys. Res. Lett., 24 (19), 2403-2406, 1997.
    • Takalo, J., Lohikosiki, R., and Timonen, J.: Structure function as a tool in AE and Dst time series analysis, Geophys. Res. Lett., 22 (5), 635-638, 1995.
    • Takalo, J., Timonen, J., and Koskinen, H.: Correlation dimension and affinity of AE data and bicolored noise, Geophys. Res. Lett., 20 (15), 1527-1530, 1993.
    • Takayasu, H.: Fractals in the Physical Sciences, Manchester University Press, Manchester, 1990.
    • Turcotte, D. L.: Fractals and Chaos in Geology and Geophysics (2nd Ed.), Cambridge University Press, Cambridge, 1997.
    • Vassiliadis, D., Sharma, A. S., Eastman, T. E., and Papadopulos, K.: Low-dimensional chaos in magnetospheric activity from AE time series, Geophys. Res. Lett., 17 (11), 1841-1844, 1990.
    • Vassiliadis, D., Klimas, A. J., Valdivia, J. A., and Baker, D. N.: The nonlinear dynamics of space weather, Physics and Chemistry of the Earth, Part C, 26 (1), 197-207, 2000.
    • Voss, R. F.: Fractals in nature: from characterization to simulation, in: The Science of Fractals Images, edited by Peitgen, H. O. and Saupe, D., Springer, New York, 1988.
    • Vo¨ro¨s, Z., Vero¨, J, and Kristek, J.: Nonlinear time series analysis of geomagnetic pulsations, Nonl. Proc. Geophys., 1, 145-155, 1994.
    • Wornell, G. W.: Signal Processing with Fractals : a Wavelet-based Approach, Prentice Hall PTR, New Jersey, 1996.
    • Wu, J. G. and Lundsted, H.: Neural network modelling of solar wind magnetosphere interaction, J. Geophys. Res. Space-Phys., 102 (A7), 14 457-14 466, 1997.
    • Zotov, O. D.: Self-affine fractal dynamics of solar and earth magnetospheric activities, Geomagnetism and Aeronomy, 40 (4), 439- 443, 2000.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article