LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Languages: English
Types: Unknown
Subjects:
This paper presents the result of an investigation into the cutting characteristics of electrical discharge machined (EDMed) surface-modified carbide cutting tool inserts. The tool inserts were coated with Titanium Nitride (TiN) by physical vapour deposition (PVD) method. In this study, comparative cutting tests using TiN coated control specimens with no EDM surface structures and TiN coated EDMed tools with a crater-like surface topography were carried out on mild steel. Various cutting speeds, up to an increase of 40% of the tool manufacturer‘s recommended speed were investigated. Thirty cuts (passes) were carried out for each inserts at the speeds investigated. After every five cuts (passes), microscopic pictures of the tool wear profiles were taken in order to monitor the progressive wear on the rake face and, on the flank of the insert. The power load was monitored for each cut using an on board meter on the machine. Results obtained confirmed advantages of cutting at all speeds investigated using EDMed coated inserts in terms of reduced tool wear. Moreover, the surface finish on the work-piece was consistently better for the EDMed inserts. It is therefore concluded, that TiN coated EDMed crater-like surface structure on tool inserts can considerably improve the tool performance.
  • No references.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article