LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Publisher: IEEE
Languages: English
Types: Other
Subjects:
In a series of papers, we have formalized an active Bayesian perception approach for robotics based on recent progress in understanding animal perception. However, an issue for applied robot perception is how to tune this method to a task, using: (i) a belief threshold that adjusts the speed-accuracy tradeoff; and (ii) an active control strategy for relocating the sensor e.g. to a preset fixation point. Here we propose that these two variables should be learnt by reinforcement from a reward signal evaluating the decision outcome. We test this claim with a biomimetic fingertip that senses surface curvature under uncertainty about contact location. Appropriate formulation of the problem allows use of multi-armed bandit methods to optimize the threshold and fixation point of the active perception. In consequence, the system learns to balance speed versus accuracy and sets the fixation point to optimize both quantities. Although we consider one example in robot touch, we expect that the underlying principles have general applicability.\ud
  • No references.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article