LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Languages: English
Types: Doctoral thesis
Subjects:
This thesis presents results of experiments designed to study the effect of applying electrochemical chloride extraction (ECE) to a range of different hardened cement pastes. Rectangular prism specimens of hydrated cement paste containing sodium chloride at different concentrations were subjected to electrolysis between the embedded steel cathodes and external anodes of activated titanium mesh. The cathodic current density used was in the range of 1 to 5 A/m2 with treatment periods of 4 to 12 weeks. After treatment, the specimens were cut into sections which were subjected to pore-solution expression and analysis in order to determine changes in the distribution of free and total ionic species. The effect of the ECE treatment on the physical and microstructural properties of the cements was studied by using microhardness and MIP techniques. XRD was employed to look at the possibility of ettringite redistribution as a result of the accumulation of soluble sulphate ions in the cement matrix near the cathode during ECE. Remigration of chloride which remains after the ECE treatment and distribution of other ions were studied by analysing specimens which had been stored for several months, after undergoing ECE treatment. The potentials of the steel cathodes were also monitored over the period to detect any changes in their corrosion state. The main findings of this research were as follows: 1, ECE, as applied in this investigation, was capable of removing both free and bound chloride. The removal process occurred relatively quickly and an equilibrium between free and bound chlorides in the specimens was maintained throughout. At the same time, alkali concentrations in the pore solution near the steel cathode increased. The soluble sulphate ionic concentration near the cathode also increased due to the local increase in the pH of the pore solution. 2, ECE caused some changes in physical and microstructural of the cement matrix. However these changes were minimal and in the case of microhardness, the results were highly scattered. Ettringite in the bulk material well away from the cathode was found not to increase significantly with the increase in charge passed.3, Remigration of chloride and other ionic species occurred slowly after cessation of ECE with a resultant gradual increase in the Cl-/OH- ratio around the steel.4, The removal of chloride from blended cements was slower than that from OPC.
  • No references.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article