Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Rockett, P.; Hathway, E.A. (2017)
Publisher: Taylor & Francis
Languages: English
Types: Article
Model-predictive control (MPC) has recently excited a great deal of interest as a new control paradigm for non-domestic buildings. Since it is based on the notion of optimisation, MPC is, in principle, well-placed to deliver significant energy savings and reduction in carbon emissions compared to existing rule-based control systems. In this paper, we critically review the prospects for buildings MPC and, in particular, the central role of the predictive mathematical model that lies at its heart; our clear emphasis is on practical implementation rather than control-theoretic aspects, and covers the role of occupants as well as the form of the predictive model. The most appropriate structure for such a model is still an open question, which we discuss alongside the development of the initial model, and the process of updating the model during the building’s operational life. The importance of sensor placement is highlighted alongside the possibility of updating the model with occupants’ comfort perception. We conclude that there is an urgent need for research on the automated creation and updating of predictive models if MPC is to become an economically-viable control methodology for non-domestic buildings. Finally, more evidence through operating full scale buildings with MPC is required to demonstrate the viability of this method.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Afram, A., & Janabi-Sharifi, F. (2014). Theory and applications of HVAC control systems - A review of model predictive control (MPC). Building and Environment, 72, 343-355. doi: 10.1016/j.buildenv.2013.11.016
    • Álvarez, J., Redondo, J., Camponogara, E., Normey-Rico, J., Berenguel, M., & Ortigosa, P. (2013). Optimizing building comfort temperature regulation via model predictive control. Energy and Buildings, 57, 361-372. doi: 10.1016/j.enbuild.2012.10.044
    • Aswani, A., Master, N., Taneja, J., Culler, D., & Tomlin, C. (2012). Reducing transient and steady state electricity consumption in HVAC using learning- based model-predictive control. Proceedings of the IEEE , 100 (1), 240-253.
    • Behl, M., Nghiem, T., & Mangharam, R. (2014). IMpACT: Inverse model accuracy and control performance toolbox for buildings. In IEEE International Conference on Automation Science and Engineering (p. 1109-1114). Taipei. doi: 10.1109/CoASE.2014.6899464
    • Bengea, S. C., Kelman, A. D., Borrelli, F., Taylor, R., & Narayanan, S. (2014). Implementation of model predictive control for an HVAC system in a mid-size commercial building. HVAC & R Research, 20(1), 121-135. doi: 10.1080/10789669.2013.834781
    • Billings, S. A. (2013). Nonlinear System Identification: NARMAX Methods in the Time, Frequency, and Spatio-temporal Domains. Hoboken, NJ: John Wiley.
    • Bordass, B., Leaman, A., & Ruyssevelt, P. (2001). Assessing building performance in use 5: Conclusions and implications. Building Research & Information, 29 (2), 144-157. doi: 10.1080/09613210010008054
    • Box, G. E. P., Jenkins, G. M., & Reinsel, G. C. (1994). Time Series Analysis: Forecasting and Control (3rd ed.). Englewood Cliffs, N.J.: Prentice Hall.Bunn, R. (2014). Soft Landings Framework (Tech. Rep. No. BG 54/2014). BSRIA.
    • Camacho, E. F., & Bordons, C. (2004). Model Predictive Control (2nd ed.). London: Springer.
    • Camponogara, E., Jia, D., Krogh, B., & Talukdar, S. (2002). Distributed model predictive control. IEEE Control Systems Magazine, 22 (1), 44-52. doi: 10.1109/37.980246
    • Carbon Trust. (2012). Closing the Gap: Lessons Learned on Realising the Potential of Low-Carbon Building Design (Tech. Rep.). London: Carbon Trust.
    • Chappells, H., & Shove, E. (2005). Debating the future of comfort: Environmental sustainability, energy consumption and the indoor environment. Building Research and Information, 33 (1), 32-40. doi: 10.1080/0961321042000322762
    • CIBSE. (2008). TM46: Energy Benchmarks. London: Chartered Institute of Building Services Engineers.
    • Cigler, J., & Prívara, S. (2010). Subspace identification and model predictive control for buildings. In 11th International Conference on Control, Automation, Robotics and Vision (ICARCV2010) (p. 750- 755). Singapore. doi: 10.1109/ICARCV.2010.5707821
    • Cigler, J., Prívara , S., Vá a, Z., Žá eková, E., & Ferkl, L. (2012). Optimization of predicted mean vote index within model predictive control framework: Computationally tractable solution. Energy and Buildings, 52, 39-49. doi: 10.1016/j.enbuild.2012.05.022
    • Cigler, J., Široký, J., Korda, M., & Jones, C. N. (2013). On the selection of the most appropriate MPC problem formulation for buildings. In 11th REHVA World Congress (CLIMA 2013). Prague, Czech Republic.
    • Cole, R. J., Robinson, J., Brown, Z., O’Shea, M., (2008) Re-contextualising the notion of comfort. Building Research and Information. 36 (4), 323-336
    • Coley, D., & Penman, J. (1992). Second order system identification in the thermal response of real buildings. Paper II: Recursive formulation for on-line building energy management and control. Building and Environment , 27 (3), 269-277. doi: 10.1016/0360-1323(92)90028-N
    • Conner, J., & Seborg, D. (2005). Assessing the need for process re-identification. Industrial & Engineering Chemistry Research, 44 (8), 2767-2775. doi: 10.1021/ie049439g
    • Crawley, D., Pedersen, C., Lawrie, L., & program. ASHRAE Journal , 42 (4), 49-56.
    • Winkelmann, F. (2000). EnergyPlus: Energy simulation
    • de Dear, R. & Brager, G. (1998). Towards an adaptive model of thermal comfort and preference. ASHRAE Transactions 104 (1), 145-167.
    • European Union. (2010). DIRECTIVE 2010/31/EU OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 19 May 2010 on the Energy Performance of Buildings. Official Journal of the European Union, L153/13. doi: 10.3000/17252555.L 2010.153.eng
    • Ferkl, L., & Široký, J. (2010). identification modelling 10.1016/j.buildenv.2009.06.004 Ceiling radiant cooling: Comparison of ARMAX and subspace
    • methods. Building and Environment, 45(1), 205-212. doi:
    • Ferreira, P., Ruano, A., Silva, S., & Conceição, E. (2012). Neural networks based predictive control for thermal comfort and energy savings in public buildings. Energy and Buildings, 55(0), 238-251. doi: 10.1016/j.enbuild.2012.08.002
    • Florita, A. R., & Henze, G. P. (2009). Comparison of short-term weather forecasting models for model predictive control. HVAC & R Research, 15(5), 835-853. doi: 10.1080/10789669.2009.10390868
    • Genceli, H., & Nikolaou, M. (1996). New approach to constrained predictive control with simultaneous model identification. AIChE Journal, 42(10), 2857-2868. doi: 10.1002/aic.690421015
    • Gevers, M. (2005). Identification for control: From the early achievements to the revival of experiment design. European Journal of Control , 11 (4-5), 335-352. doi: 10.3166/ejc.11.335-352
    • Gunay, H. B., Bursill, J., Huchuk, B., O'Brien, W., & Beausoleil-Morrison, I. (2014). Shortest-predictionhorizon model-based predictive control for individual offices. Building and Environment, 82 , 408- 419. doi: 10.1016/j.buildenv.2014.09.011
    • Gunay, H. B., O'Brien, W., & Beausoleil-Morrison, I. (2013). A critical review of observation studies, modeling, and simulation of adaptive occupant behaviors in offices. Building and Environment, 70 , 31-47. doi: 10.1016/j.buildenv.2013.07.020
    • Guyon, I., & Elisseeff, A. (2003). An introduction to variable and feature selection. Journal of Machine Learning Research, 3 , 1157-1182.
    • Hastie, T., Tibshirani, R., & Friedman, J. (2009). The Elements of Statistical Learning: Data Mining, Inference, and Prediction (2nd ed.). New York: Springer-Verlag.
    • Hathway, A., Rockett, P., & Carpenter, P. (2013). The use of machine learning in model predictive control for the operation of non-domestic buildings. In Futurebuild 2013. Bath, UK.
    • Hazyuk, I., Ghiaus, C., & Penhouet, D. (2012). Optimal temperature control of intermittently heated buildings using model predictive control: Part II – Control algorithm. Building and Environment, 51 , 388-394. doi: 10.1016/j.buildenv.2011.11.008
    • Hellwig, R. T. (2015). Perceived control in indoor environments: A conceptual approach, Building Research and Information, 43(3), 302-315. doi=10.1080/09613218.2015.1004150..
    • Henze, G. P. (2013). Editorial – Model predictive control for buildings: A quantum leap? Building Performance Simulation, 6 (3), 157- 158. (Special Issue on Model Control for Buildings) doi: 10.1080/19401493.2013.778519
    • Hjalmarsson, H. (2009). System identification of complex and structured systems. European Journal of Control , 15 (3-4), 275-310. doi: 10.3166/ejc.15.275-310
    • Hou, Z.-S., & Wang, Z. (2013). From model-based control to data-driven control: Survey, classification and perspective. Information Sciences, 235 (0), 3-35. doi: 10.1016/j.ins.2012.07.014
    • Huang, G. (2011). Model predictive control of VAV zone thermal systems concerning bilinearity and gain nonlinearity. Control Engineering Practice, 19(7), 700-710. doi: 10.1016/j.conengprac.2011.03.005
    • Hussain, M. A. (1999). Review of the applications of neural networks in chemical process control – simulation and online implementation. Artificial Intelligence in Engineering , 13 (1), 55-68. doi: 10.1016/S0954-1810(98)00011-9
    • Lamoudi, M. Y., Alamir, M., & Béguery, P. (2012). Model predictive control for energy management
    • in buildings. Part 2: Distributed model predictive control. In 4th IFAC Nonlinear Model Predictive
    • Control Conference (p. 226-231). Leeuwenhorst, Netherlands. doi: 10.3182/20120823-5-NL-3013.00036
    • Landau, I. (1999). From robust control to adaptive control. Control Engineering Practice, 7 (9), 1113-1124. doi: 10.1016/S0967-0661(99)00076-3
    • Levermore, G. J. (2000). Building Energy Management Systems: Applications to Low-energy HVAC and
    • Ljung, L. (2010). Perspectives on system identification. Annual Reviews in 10.1016/j.arcontrol.2009.12.001
    • Ma, Y., Kelman, A., Daly, A., & Borrelli, F. (2012). Predictive control for energy efficient buildings with thermal storage: Modeling, simulation, and experiments. IEEE Control Systems, 32 (1), 44-64. doi: 10.1109/MCS.2011.2172532
    • Marafioti, G., Bitmead, R. R., & Hovd, M. (2014). Persistently exciting model predictive control. International Journal of Adaptive Control and Signal Processing, 28 (6), 536-552. doi: 10.1002/acs.2414
    • Myhren, J., & Holmberg, S. (2009). Design considerations for ventilation-radiators: Comparisons to traditional two-panel radiators. Energy and Buildings, 41 (1), 92-100. doi:10.1016/j.enbuild.2008.07.014
    • Nelles, O. (2001). Nonlinear System Identification: From Classical Approaches to Neural Networks and Fuzzy Models. Berlin: Springer.
    • Nishiguchi, J., Konda, T., & Dazai, R. (2010). Data-driven optimal control for building energy conservation. In Sice Annual Conference (p. 116-120). Taipei.
    • Oldewurtel, F., Parisio, A., Jones, C. N., Gyalistras, D., Gwerder, M., Stauch, V., . . . Morari, M. (2012). Use of model predictive control and weather forecasts for energy efficient building climate control. Energy and Buildings, 45, 15-27. doi: 10.1016/j.enbuild.2011.09.022
    • Oldewurtel, F., Sturzenegger, D., & Morari, M. (2013). Importance of occupancy information for building climate control. Applied Energy, 101, 521-532. doi:10.1016/j.apenergy.2012.06.014
    • Page, J., Robinson, D., Morel, N., & Scartezzini, J.-L. (2008). A generalised stochastic model for the simulation of occupant presence. Energy and Buildings, 40 (2), 83-98. doi: 10.1016/j.enbuild.2007.01.018
    • Pattarello, G., Wei, L., Ebadat, A., Wahlberg, B., & Johansson, K. H. (2013). The KTH open testbed
    • for smart HVAC control. In 5th ACM Workshop on Embedded Systems for Energy-efficient Buildings
    • (BuildSys’13) (p. 34:1-34:2). Rome, Italy. doi: 10.1145/2528282.2534154
    • Prívara, S., Cigler, J., Vá a, Z., Oldewurtel, F., Sagerschnig, C., & Žá eková, E. (2013). Building modeling as a crucial part for building predictive control. Energy and Buildings, 56(0), 8-22. doi: 10.1016/j.enbuild.2012.10.024
    • Prívara, S., Široký, J., Ferkl, L., & Cigler, J. (2011). Model predictive control of a building heating system: The first experience. Energy and Buildings, 43(2-3), 564-572. doi: 10.1016/j.enbuild.2010.10.022
    • Rathouský J., & Havlena, V. (2013). MPC-based approximate dual controller by information matrix maximization. International Journal of Adaptive Control and Signal Processing , 27 (11), 974-999. doi: 10.1002/acs.2370
    • Riederer, P., Marchio, D., & Visier, J. C. (2002). Influence of sensor position in building thermal control: Criteria for zone models. Energy and Buildings, 34(8), 785-798. doi: 10.1016/S0378-7788(02)00097-X
    • Rivera, D. E., Lee, H., Braun, M. W., & Mittelmann, H. D. (2003). “Plant friendly" system identification: A challenge for the process industries. In 13th IFAC Symposium on System Identification (SYSSID 2003). Rotterdam, Netherlands.
    • Söderström, T., & Stoica, P. (1989). System Identification. New York: Prentice Hall.
    • Sotomayor, O. A., Odloak, D., & Moro, L. F. (2009). Closed-loop model reidentification of processes under MPC with zone control. Control Engineering Practice, 17 (5), 551-563. doi: 10.1016/j.conengprac.2008.10.002
    • Sturzenegger, D., Gyalistras, D., Gwerder, M., Sagerschnig, C., Morari, M., & Smith, R. (2013). Model predictive control of a Swiss office building. In Clima - RHEVA World Congress (p. 3227-3236). Prague, Czech Republic.
    • Sturzenegger, D., Gyalistras, D., Morari, M., & Smith, R. S. (2012). Semi-automated modular modeling
    • of buildings for model predictive control. In 4th ACM Workshop on Embedded Sensing Systems for
    • Energy- Efficiency in Buildings (BuildSys ’12) (p. 99-106). Toronto, Canada. doi:
    • Subrt, L., & Pechac, P. (2012). Intelligent walls as autonomous parts of smart indoor environments. IET Communications, 6 (8), 1004-1010. doi: 10.1049/iet- com.2010.0544
    • Tanabe, S., Iwahashi, Y., Tsushima, S., & Nishihara, N. (2013). Thermal comfort and productivity in offices under mandatory electricity savings after the Great East Japan earthquake. Architectural Science Review , 56 (1), 4-13.
    • Tanner, R. A., & Henze, G. P. (2014). Stochastic control optimization for a mixed mode building considering occupant window opening behaviour. Journal of Building Performance Simulation, 7 (6), 427-444. doi: 10.1080/19401493.2013.863384
    • Vá a, Z., Cigler, J., Široký, J., Žá eková, E., & Ferkl, L. (2014). Model-based energy efficient control applied to an office building. Journal of Process Control, 24 (6), 790-797. doi: 10.1016/j.jprocont.2014.01.016
    • Vá a, Z., Kube ek, J., & Ferkl, L. (2010). Notes on finding black-box model of a large building. In IEEE International Conference on Control Applications (CCA 2010) (p. 1017- 1022). Yokohama, Japan. doi: 10.1109/CCA.2010.5611157
    • Žá eková, E., Vá a, Z., Hoogmartens, J., Verhelst, C., Sourbron, M., Ferkl, L., & Helsen, L. (2013). Identification for model based predictive control applied to an office building with a thermally activated building systems. In 11th REHVA World Congress (Clima 2013) (p. 2430-2439). Prague, Czech Republic.
    • West, S. R., Ward, J. K., & Wall, J. (2014). Trial results from a model predictive control and optimisation system for commercial building HVAC. Energy and Buildings, 72 (0), 271-279. doi: 10.1016/j.enbuild.2013.12.037
    • Zhu, Y., & Butoyi, F. (2002). Case studies on closed-loop identification for MPC. Control Engineering Practice, 10 (4), 403-417. doi: 10.1016/S0967-0661(02)00007-2
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article