LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Publisher: American Society of Civil Engineers
Languages: English
Types: Article
Subjects:
Weather information is frequently requested by travelers. Prior literature indicates that inclement weather is one of the most important factors contributing to traffic congestion and crashes. In this paper, we propose a methodology to use real-time weather information to predict future speeds. The reason for doing so is to ultimately have the capability to disseminate weather-responsive travel time estimates to those requesting information. Using a stratified sampling technique, we select cases with different weather conditions (precipitation levels) and use a linear regression model (called the base model) and a statistical learning model (using Support Vector Machines for Regression) to predict 30-minute ahead speeds. One of the major inputs into a weather-responsive short-term speed prediction method is weather forecasts; however, weather forecasts may themselves be inaccurate. We assess the effects of such inaccuracies by means of simulations. The predictive accuracy of the SVR models show that statistical learning methods may be useful in bringing together streaming forecasted weather data and real-time information on downstream traffic conditions to enable travelers to make informed choices.

Share - Bookmark

Cite this article