LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Languages: English
Types: Article
Subjects:
Summary\ud Objectives:\ud Flow ball devices have been used as teaching tools to provide visual real-time feedback of airflow during singing. This study aims at exploring static back pressure and ball height as function of flow for two devices, marketed as flow ball and floating ball game.\ud Study Design:\ud This is a comparative descriptive study.\ud Methods:\ud A flow-driven vocal tract simulator was used to investigate the aerodynamic properties of these two devices, testing them for four different ball sizes. The flow range investigated was between 0 and 0.5 L/s. Audio, flow, pressure, and ball height were recorded.\ud Results:\ud The flow pressure profiles for both tested devices were similar to those observed in previous studies on narrow tubes. For lifting the ball, both devices had a flow and a pressure threshold. The tested floating ball game required considerably higher back pressure for a given flow as compared with the flow ball.\ud Conclusions:\ud Both tested devices have similar effects on back pressure as straws of 3.7 and 3.0 mm in diameter for the flow ball and the floating ball game, respectively. One might argue that both devices could be used as tools for practicing semi-occluded vocal tract exercises, with the additional benefit of providing real-time visual feedback of airflow during phonation. The flow threshold, combined with the flow feedback, would increase awareness of flow, rather than of pressure, during exercises using a flow ball device.
  • No references.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article