Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Publisher: American Chemical Society
Languages: English
Types: Article
In situ studies of methyl stearate growing from supersaturated n-dodecane, kerosene, and toluene solutions reveal strong evidence that solvent choice influences the crystal morphology and crystal growth kinetics. Crystals with similar habit are observed in all solvents, with the exception of lower supersaturations in kerosene, where a less symmetric morphology was observed. BFDH analysis based on the monoclinic C2 crystal structure of methyl stearate yielded the morphological indexation to be (110), (1–10), (−110), and (−1–10) for the dominant observed habit and (110) (1–10) (−1–10) (−240) (−3–10) for the less symmetric habit observed in kerosene solvent. Measurements of the growth rate for the (110) and (1–10) faces are similar for all solutions ranging from 0.02 to 1.13 μm/s, for significantly lower values of supersaturation in the case of toluene. The tendency of the growth rate dependence on σ was consistent with the Burton-Cabrera-Frank (BCF) growth mechanism in n-dodecane, the Birth and Spread (B&S) mechanism in kerosene and diffusion controlled in toluene solvent.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • (1) Ma, C. Y.; Liu, J. J.; Wang, X. Z. Measurement, modelling, and closed-loop control of crystal shape distribution: literature review and future perspectives. Particuology 2016, 26, 1−18.
    • (2) Giberti, F.; Salvalaglio, M.; Parrinello, M. Metadynamics studies of crystal nucleation. IUCrJ 2015, 2, 256−266.
    • (3) Salvalaglio, M.; Perego, C.; Giberti, F.; Mazzotti, M.; Parrinello, M.
    • Molecular-dynamics simulations of urea nucleation from aqueous solution. Proc. Natl. Acad. Sci. U. S. A. 2015, 112, E6−E14.
    • (4) Liu, X. Y.; Boek, E. S.; Briels, W. J.; Bennema, P. Prediction of crystal growth morphology based on structural analysis of the solid-fluid interface. Nature 1995, 374, 342−345.
    • (5) Liu, X. Y.; Boek, E. S.; Briels, W. J.; Bennema, P. Analysis of morphology of crystals based on identification of interfacial structure.
    • J. Chem. Phys. 1995, 103, 3747−3754.
    • (6) Gnanasambandam, S.; Enemark, S.; Rajagopalan, R. First-principle prediction of crystal habits in mixed solvents: alpha-glycine in methanol/water mixtures. CrystEngComm 2011, 13, 2208−2011.
    • (7) Jarzembska, K. N.; Kamiński, D.; Hoser, A. A.; Malińska, M.; Senczyna, B.; Wozńiak, K.; Gagos, M. Crontrolled crystallization, structure, and molecular properties of lodoacetylamphotericin B. Cryst.
    • Growth Des. 2012, 12, 2336−2345.
    • (8) Kumar, D.; Thipparaboina, R.; Modi, S. R.; Bansal, A. K.; Shastri, N.
    • CrystEngComm 2015, 17, 1615−1624.
    • (9) Toroz, D.; Rosbottom, I.; Turner, T.; Camacho, D. M.; Hammond, R. B.; Roberts, K. J. Towards an understanding of the nucleation of alpha-para amino benzoic acid from ethanolic solutions: a multi-scale approach, Farad. Faraday Discuss. 2015, 179, 79−114.
    • (10) Jarzembska, K. N.; Kamiński, R.; Wenger, E.; Lecomte, C.; Dominiak, P. M. Interplay between charge density distribution, crystal structure energetic features, and crystal morphology of 6-methyl-2- thiouracil. J. Phys. Chem. C 2013, 117, 7764−7775.
    • (11) Nguyen, T. T. H.; Hammond, R. B.; Roberts, K. J.; Marziano, I.; Nichols, G. Precision measurement of the growth rate and mechanism of Ibuprofen {001} and {011} as a function of crystallisation environment.
    • CrystEngComm 2014, 16, 4568−4586.
    • (12) Camacho, D. M.; Roberts, K. J.; Lewtas, K.; More, I. The crystal morphology and growth rates of triclinic n-docosane crystallising from n-dodecane solutions. J. Cryst. Growth 2015, 416, 47−56.
    • (13) Wu, K.; Ma, C. Y.; Liu, J. J.; Zhang, Y.; Wang, X. Z. Measurement of crystal face specific growth kinetics. Cryst. Growth Des. 2016, 16, 4855−4868.
    • (14) Van Driessche, A. E. S.; Otalora, F.; Sazaki, G.; Sleutel, M.; Tsukamoto, K.; Gavira, J. A. Comparison of different experimental techniques for the measurement of crystal growth kinetics. Cryst. Growth Des. 2008, 8, 4316−4323.
    • (15) Aleby, S.; von Sydow, E. The crystal structure of methyl stearate.
    • Acta Crystallogr. 1960, 13, 487.
    • (16) MacGillavry, C. H.; Wolthuis-Spuy, M. Crystal structure of an orthorhombic modification of methyl stearate. Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. 1970, B26, 645−648.
    • (17) Sangwal, K. Additives and crystallization processes: from fundamentals to applications; Wiley: Chichester, 2007.
    • (18) Mullin, J.W. Crystallization, 4th ed.; Butterworth-Heinemann: Oxford, 2001.
    • (19) Garside, J. Industrial crystallization from solution. Chem. Eng. Sci.
    • (20) Burton, W. K.; Cabrera, N.; Frank, F. C. The growth of crystals and the equilibrium structure of their surfaces. Philos. Trans. R. Soc., A 1951, 243, 299−358.
    • (21) Weeks, J. D.; Gilmer, G. H. Dynamics of crystal growth. Adv.
    • Chem. Phys. 1979, 40, 157−227.
    • (22) Jiang, H. Molecular-scale effect of tailor-made additives on the nucleation and growth and crystal properties of long-chain alkyl methylesters; School of Process Environmental and Materials Engineering, University of Leeds, 2012.
    • (23) Lundagermadsen, H. E.; Boistelle, R. Growth kinetics of the (001) faces of hexatriacontane (C36H74) in solution. J. Cryst. Growth 1979, 46, 681−690.
    • (24) Beckmann, W. Growth kinetics of the (001) and (110) faces of the B modification of stearic acid growing from n-alkanes. J. Cryst.
    • Growth 1986, 79, 797−800.
    • (25) Beckmann, W.; Boistelle, R. Growth kinetics of the (110) face of stearic acid growing from butanone solutions, pure solutions and in the presence of an emulsifier. J. Cryst. Growth 1985, 72, 621−630.
    • (26) Beckmann, W.; Kammer, S.; Meier, J.; Boistelle, R. growth kinetics of the (110) face of the B-polymorphs and C-polymorphs of stearic-acid growing from octanone-2 solutions. J. Cryst. Growth 1986, 74, 326−330.
    • (27) Boistelle, R.; Astier, J. P. Crystallization mechanisms in solution. J.
    • Cryst. Growth 1988, 90, 14−30.
    • (28) Camacho, D. Crystallisation in diesel and biodiesel fuel in relation to their solution composition; PhD Thesis; School of Chemical and Process Engineering, University of Leeds, 2015.
    • (29) Camacho, D. et al. Solubility and nucleation of methyl stearate as a function of crystallization environment; Cryst. Growth Des.; Submitted for publication; cg-2016-014359.
  • Inferred research data

    The results below are discovered through our pilot algorithms. Let us know how we are doing!

    Title Trust
  • No similar publications.

Share - Bookmark

Cite this article