Remember Me
Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:

OpenAIRE is about to release its new face with lots of new content and services.
During September, you may notice downtime in services, while some functionalities (e.g. user registration, login, validation, claiming) will be temporarily disabled.
We apologize for the inconvenience, please stay tuned!
For further information please contact helpdesk[at]openaire.eu

fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Malik, Vatsala
Languages: English
Types: Doctoral thesis
Subjects: F100, C700

Classified by OpenAIRE into

mesheuropmc: digestive system
Glycosyltransferases (GTs) are essential for the biosynthesis and diversification of many therapeutically important natural products. Of these, UDP-sugar: sterol glucosyltransferases (UGTs) ( catalyse the synthesis of therapeutically important steryl glycosides (SGs). Guided by the sequence similarity with a previously characterised N-terminally truncated UGT from Saccharomyces cerevisiae (UGT51), this study reports the cloning of the gene fragment encoding the C-terminal catalytic domains from related yeasts and the expression and characterisation of their encoded products produced. N-terminally histidine tagged proteins were purified for in vitro assays against a panel of sterol and steroidal acceptors. Liquid chromatography-mass spectrometry (LC-MS) and kinetic analysis led to the successful characterisation of two novel UGTs from Pichia angusta and Kluyveromyces lactis. In addition, testosterone was shown to be utilized by all UGTs, including the previously characterised S. cerevisiae UGT51. Random mutagenesis of UGTs and homology modelling of the S. cerevisiae UGT revealed structural similarities with family 1 bacterial glycopeptide GTs. Given the structural and mechanistic similarities among GT family 1 UGTs, this approach may provide a template for genetic manipulation of novel UGTs from other members of the GT superfamily with a better understanding of catalytic domains and for broadening their scope in drug development. It may also aid the development of a generic process in the synthesis of SGs.
  • No references.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article

Cookies make it easier for us to provide you with our services. With the usage of our services you permit us to use cookies.
More information Ok