Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Harris, John (2016)
Publisher: John Wiley and Sons Inc.
Journal: The European Journal of Neuroscience
Languages: English
Types: Article
Subjects: mustard oil, RX 821002, Neurosystems, descending inhibition, DNIC, spinal cord

Classified by OpenAIRE into

mesheuropmc: body regions
Abstract The role of spinal α 2‐adrenoceptors in mediating long‐lasting modulation of hind limb withdrawal reflexes following acute noxious chemical stimulation of distant heterotopic and local homotopic locations has been investigated in pentobarbitone‐anaesthetized rabbits. Reflexes evoked in the ankle extensor muscle medial gastrocnemius (MG) by electrical stimulation of the ipsilateral heel, and reflexes elicited in the ankle flexor tibialis anterior and the knee flexor semitendinosus by stimulation at the base of the ipsilateral toes, could be inhibited for over 1 h after mustard oil (20%) was applied to either the snout or into the contralateral MG. The heel–MG response was also inhibited after applying mustard oil across the plantar metatarsophalangeal joints of the ipsilateral foot, whereas this homotopic stimulus facilitated both flexor responses. Mustard oil also caused a significant pressor effect when applied to any of the three test sites. The selective α2‐adrenoceptor antagonist, RX 821002 (100–300 μg, intrathecally), had no effect on reflexes per se, but did cause a decrease in mean arterial blood pressure. In the presence of the α2‐blocker, inhibitory and facilitatory effects of mustard oil on reflexes were completely abolished. These data imply that long‐lasting inhibition of spinal reflexes following acute noxious stimulation of distant locations involves activation of supraspinal noradrenergic pathways, the effects of which are dependent on an intact α2‐adrenoceptor system at the spinal level. These pathways and receptors also appear to be involved in facilitation (sensitization) as well as inhibition of reflexes following a noxious stimulus applied to the same limb.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Alarcon, G. & Cervero, F. (1989) Effects of two anaesthetic regimes on the heterotopic inhibition of rat dorsal horn neurones. J. Physiol., 416, 19P.
    • Andersen, O.K., Sonnenborg, F.A. & Arendt-Nielsen, T. (1999) Modular organization of human leg withdrawal reflexes elicited by electrical stimulation of the foot sole. Muscle Nerve, 22, 1520-1530.
    • Baba, Y., Kohase, H., Oono, Y., Fujii-Abe, K. & Arendt-Nielsen, L. (2012) Effects of dexmedetomidine on conditioned pain modulation in humans. Eur. J. Pain, 16, 1137-1147.
    • Blessing, W.W. (1997) The Lower Brainstem and Bodily Homeostasis. Oxford University Press, Oxford.
    • Blessing, W.W., Chalmers, J.P. & Howe, P.R.C. (1978) Distribution of catecholemine-containing cell bodies in the rabbit central nervous system. J. Comp. Neurol., 179, 407-424.
    • Blessing, W.W., Goodchild, A.K., Dampney, R.A.L. & Chalmers, J.P. (1981) Cell groups in the lower brain stem of the rabbit projecting to the spinal cord, with special reference to catecholamine-containing neurons. Brain Res., 221, 35-55.
    • Blessing, W.W., Howe, P.R.C., Joh, T.H., Oliver, J.R. & Willoughby, J.O. (1986) Distribution of tyrosine hydroxylase and neuropeptide Y-like immunoreactive neurons in rabbit medulla oblongata, with attention to colocalization studies, presumptive adrenaline-synthesizing perikarya, and vagal preganglionic cells. J. Comp. Neurol., 248, 285-300.
    • Bouhassira, D., Bing, Z. & Le Bars, D. (1990) Studies of the brain structures involved in diffuse noxious inhibitory controls: the mesencephalon. J. Neurophysiol., 64, 1712-1723.
    • Bouhassira, D., Bing, Z. & Le Bars, D. (1992a) Effects of lesions of locus coeruleus/subcoeruleus on diffuse noxious inhibitory controls in the rat. Brain Res., 571, 140-144.
    • Bouhassira, D., Villanueva, L., Bing, Z. & Le Bars, D. (1992b) Involvement of the subnucleus reticularis dorsalis in diffuse noxious inhibitory controls in the rat. Brain Res., 595, 353-357.
    • Bouhassira, D., Bing, Z. & Le Bars, D. (1993) Studies of brain structures involved in diffuse noxious inhibitory controls in the rat: the rostral ventromedial medulla. J. Physiol., 463, 667-687.
    • Bouhassira, D., Chitour, D., Villanueva, L. & Le Bars, D. (1995) The spinal transmission of nociceptive information: modulation by the caudal medulla. Neuroscience, 69, 931-938.
    • Chitour, D., Dickenson, A.H. & Le Bars, D. (1982) Pharmacological evidence for the involvement of serotonergic mechanisms in diffuse noxious inhibitory controls (DNIC). Brain Res., 236, 329-337.
    • Clarke, R.W. & Harris, J. (2002) RX 821002 as tool for physiological investigation of a2-adrenoceptors. CNS Drug Rev., 8, 177-193.
    • Clarke, R.W. & Harris, J. (2004) The organization of motor responses to noxious stimuli. Brain Res. Rev., 46, 163-172.
    • Clarke, R.W., Ford, T.W. & Taylor, J.S. (1989) Reflex actions of selective stimulation of sural nerve C fibres in the rabbit. Quart. J. Exp. Physiol., 74, 681-690.
    • Clarke, R.W., Harris, J. & Houghton, A.K. (1996) Spinal 5-HT-receptors and tonic modulation of transmission through a withdrawal reflex pathway in the decerebrated rabbit. Br. J. Pharmacol., 119, 1167-1176.
    • Clarke, R.W., Parry-Baggott, C., Houghton, A.K. & Ogilvie, J. (1998) The involvement of bulbospinal pathways in fentanyl-induced inhibition of spinal withdrawal reflexes in the decerebrated rabbit. Pain, 78, 197- 207.
    • Clarke, R.W., Harris, J. & Ogilvie, J. (2000) Imidazoline I2-receptors and spinal reflexes in the decerebrated rabbit. Neuropharmacol., 39, 1904-1912.
    • Clarke, R.W., Harris, J. & Houghton, A.K. (2001a) Endogenous adrenergic control of reflexes evoked by mechanical stimulation of the heel in the decerebrated rabbit. Neurosci. Lett., 308, 189-192.
    • Clarke, R.W., Wych, B.E. & Harris, J. (2001b) Adaptive changes in withdrawal reflexes after noxious stimulation at the heel and the toes in the decerebrated rabbit. Neurosci. Lett., 304, 120-122.
    • Cook, A.J., Woolf, C.J., Wall, P.D. & McMahon, S.B. (1987) Dynamic receptive field plasticity in rat spinal cord dorsal horn following C-primary afferent input. Nature, 325, 151-153.
    • Coote, J.H. & Lewis, D.I. (1995) Bulbospinal catecholamine neurones and sympathetic pattern generation. J. Physiol. Pharmacol., 46, 259-271.
    • Dahlstro€m, A. & Fuxe, K. (1964) Evidence for the existence of monoaminecontaining neurons in the central nervous system. I. Demonstration of monoamines in the cell bodies of brain stem neurons. Acta Physiol. Scand., 62(Suppl 232), 1-55.
    • De Felice, M., Sanoja, R., Wang, R., Vera-Portocarrero, L., Oyarzo, J., King, T., Ossipov, M.H., Vanderah, T.W., Lai, J., Dussor, G.O., Fields, H.L., Price, T.J. & Porreca, F. (2011) Engagement of descending inhibition from the rostral ventromedial medulla protects against chronic neuropathic pain. Pain, 152, 2701-2709.
    • Dickenson, A.H., Rivot, J.P., Chaouch, A., Besson, J.M. & Le Bars, D. (1981) Diffuse noxious inhibitory controls (DNIC) in the rat with or without pCPA pretreatment. Brain Res., 216, 313-321.
    • Falinower, S., Willer, J.C., Junien, J.L. & Le Bars, D. (1994) A C-fiber reflex modulated by heterotopic noxious somatic stimuli in the rat. J. Neurophysiol., 72, 194-213.
    • Felten, D.L. & Cummings, J.P. (1979) The raphe nuclei of the rabbit brain stem. J. Comp. Neurol., 187, 199-244.
    • Gassner, M., Ruscheweyh, R. & Sandkuhler, J. (2009) Direct excitation of spinal GABAergic interneurons by noradrenaline. Pain, 145, 204-210.
    • Ge, H.Y., Collet, T., Mørch, C.D., Arendt-Nielsen, L. & Andersen, O.K. (2007) Depression of the human nociceptive withdrawal reflex by segmental and heterosegmental intramuscular electrical stimulation. Clin. Neurophysiol., 118, 1626-1632.
    • Gjerstad, J., Tjølsen, A., Svendsen, F. & Hole, K. (2000) Inhibition of spinal nociceptive responses after intramuscular injection of capsaicin involves activation of noradrenergic and opioid systems. Brain Res., 859, 132-136.
    • Green, G.M., Lyons, L. & Dickenson, A.H. (1998) a2-Adrenoceptor antagonists enhance responses of dorsal horn neurones to formalin induced inflammation. Eur. J. Pharmacol., 347, 201-204.
    • Harris, J.A. (1996) Descending antinociceptive mechanisms in the brainstem: Their role in the animal's defensive system. J. Physiol., 90, 15-25.
    • Harris, J. & Clarke, R.W. (1992) An analysis of adrenergic influences on the sural-gastrocnemius reflex of the decerebrated rabbit. Exp. Brain Res., 92, 310-317.
    • Harris, J. & Clarke, R.W. (1993) Motor and cardiovascular effects of selective a2-adrenoceptor antagonists in the decerebrated rabbit. Eur. J. Pharmacol., 237, 323-328.
    • Harris, J. & Clarke, R.W. (2003) Organisation of sensitisation of hind limb withdrawal reflexes from acute noxious stimuli in the rabbit. J. Physiol., 546, 251-265.
    • Harris, J., Joules, C., Stanley, C., Thomas, P. & Clarke, R.W. (2004) Glutamate and tachykinin receptors in central sensitization of withdrawal reflexes in the decerebrated rabbit. Exp. Physiol., 89, 187-198.
    • Howe, P.R.C., Moon, E. & Dampney, R.A.L. (1983) Distribution of serotonin nerve cells in the rabbit brainstem. Neurosci. Lett., 38, 125- 130.
    • Hudson, A.L., Mallard, N.J., Tyacke, R. & Nutt, D.J. (1992) [3H]- RX821002: a higly selective ligand for the indentification of a2-adrenoceptors in the rat brain. Mol. Neuropharmacol., 1, 219-229.
    • Hughes, S.W., Hickey, L., Hulse, R.P., Lumb, B.M. & Pickering, A.E. (2013) Endogenous analgesic action of the pontospinal noradrenergic system spatially restricts and temporally delays the progression of neuropathic pain following tibial nerve injury. Pain, 154, 1680-1690.
    • Jinks, S.L., Antognini, J.F. & Carstens, E. (2003) Isoflurane depresses diffuse noxious inhibitory controls in rats between 0.8 and 1.2 minimum alveolar anesthetic concentration. Anesth. Analg., 97, 111-116.
    • Jones, S.L. (1991) Descending noradrenergic influences on pain. Prog. Brain Res., 88, 381-394.
    • Jordt, S.E., Bautista, D.M., Chuang, H.H., McKemy, D.D., Zygmunt, P.M., Hogestatt, E.D., Meng, I.D. & Julius, D. (2004) Mustard oils and cannabinoids excite sensory nerve fibres through the TRP channel ANKTM1. Nature, 427, 260-265.
    • Kalliom€aki, J., Schouenborg, J. & Dickenson, A.H. (1992) Differential effects of a distant noxious stimulus on hindlimb nociceptive withdrawal reflexes in the rat. Eur. J. Neurosci., 4, 648-652.
    • Kawasaki, Y., Kumamoto, E., Furue, H. & Yoshimura, M. (2003) a2 Adrenoceptor-mediated presynaptic inhibition of primary afferent glutamatergic transmission in rat substantia gelatinosa neurons. Anesthesiology, 98, 682-689.
    • Kraus, E., Besson, J.M. & Le Bars, D. (1982) Behavioural model for diffuse noxious inhibitory controls (DNIC): potentiation by 5-hydroxytryptophan. Brain Res., 231, 461-465.
    • Kuraishi, Y., Hirota, N., Sato, Y., Kaneko, S., Satoh, M. & Takagi, H. (1985) Noradrenergic inhibition of the release of substance P from the primary afferents in the rabbit spinal dorsal horn. Brain Res., 359, 177-182.
    • Le Bars, D. & Willer, J.C. (2002) Pain modulation triggered by high-intensity stimulation: implication for acupuncture analgesia? Int. Congr. Ser., 1238, 11-29.
    • Le Bars, D., Dickenson, A.H. & Besson, J.M. (1979a) Diffuse noxious inhibitory controls (DNIC). I. Effects on dorsal horn convergent neurones in the rat. Pain, 6, 283-304.
    • Le Bars, D., Dickenson, A.H. & Besson, J.M. (1979b) Diffuse noxious inhibitory controls (DNIC). II. Lack of effect on non-convergent neurones, supraspinal involvement and theoretical implications. Pain, 6, 305-327.
    • LeDoux, J. (1996) Emotional networks and motor control: a fearful view. Prog. Brain Res., 107, 437-446.
    • Levinsson, A., Garwicz, M. & Schouenborg, J. (1999) Sensorimotor transformation in cat nociceptive withdrawal reflex system. Eur. J. Neurosci., 11, 4327-4332.
    • Lu, Y. & Perl, E.R. (2007) Selective action of noradrenaline and serotonin on neurones of the spinal superficial dorsal horn in the rat. J. Physiol., 582, 127-136.
    • Maeda, M., Tsuruoka, M., Hayashi, B., Nagasawa, I. & Inoue, T. (2009) Descending pathways from activated locus coeruleus/subcoeruleus following unilateral hindpaw inflammation in the rat. Brain Res. Bull., 78, 170- 174.
    • Mansikka, H., Lahdesmaki, J., Scheinin, M. & Pertovaara, A. (2004) alpha (2A) Adrenoceptors contribute to feedback inhibition of capsaicin-induced hyperalgesia. Anesthesiology, 101, 185-190.
    • Millan, M.J. (2002) Descending control of pain. Prog. Neurobiol., 66, 355- 474.
    • Morgan, M.M. (1999) Paradoxical inhibition of nociceptive neurons in the dorsal horn of the rat spinal cord during a nociceptive hindlimb reflex. Neuroscience, 88, 489-498.
    • Morgan, M.M., Heinricher, M.M. & Fields, H.L. (1994) Inhibition and facilitation of different nocifensor reflexes by spatially remote noxious stimuli. J. Neurophysiol., 72, 1152-1160.
    • Newman-Tancredi, A., Nicolas, J.P., Audinot, V., Gavaudan, S., Verriele, L., Touzard, M., Chaput, C., Richard, N. & Millan, M.J. (1998) Actions of a2 adrenoceptor ligands at a2A and 5-HT1A receptors: the antagonist, atipamezole, and the agonist, dexmedetomidine, are highly selective for a2A adrenoceptors. N.-S. Arch. Pharmacol., 358, 197-206.
    • North, R.A. & Yoshimura, M. (1984) The actions of noradrenaline on neurones of the rat substantia gelatinosa in vitro. J. Physiol., 349, 43-55.
    • Ogilvie, J. & Clarke, R.W. (1998) Effect of RX 821002 at 5-HT1A-receptors in rabbit spinal cord in vivo Br. J. Pharmacol., 123, 1138-1142.
    • Ogilvie, J., Simpson, D.A.A. & Clarke, R.W. (1999) Tonic adrenergic and serotonergic inhibition of a withdrawal reflex in rabbits subjected to different levels of surgical preparation. Neuroscience, 89, 1247-1258.
    • Omote, K., Kawamata, T., Kawamata, M. & Namiki, A. (1998) Formalininduced nociception activates a monoaminergic descending inhibitory system. Brain Res., 814, 194-198.
    • O'Rourke, M.F., Blaxall, H.S., Iversen, L.J. & Bylund, D.B. (1994) Characterization of [3H]RX821002 binding to alpha-2 adrenergic receptor subtypes. J. Pharmacol. Exp. Ther., 268, 1362-1367.
    • Ossipov, M.H., Dussor, G.O. & Porreca, F. (2010) Central modulation of pain. J. Clin. Invest., 120, 3779-3787.
    • Pan, Y.Z., Li, D.P. & Pan, H.L. (2002) Inhibition of glutamatergic synaptic input to spinal lamina IIo neurons by presynaptic alpha(2)-adrenergic receptors. J. Neurophysiol., 87, 1938-1947.
    • Parsons, C.M. & Goetzl, F.R. (1945) Effect of induced pain on pain threshold. P. Soc. Exp. Biol. Med., 60, 327-329.
    • Pertovaara, A. (2006) Noradrenergic pain modulation. Prog. Neurobiol., 80, 53-83.
    • Rahman, W., D'Mello, R. & Dickenson, A.H. (2008) Peripheral nerve injury-induced changes in spinal a2-adrenoceptor-mediated modulation of mechanically evoked dorsal horn neuronal responses. J. Pain, 9, 350-359.
    • Sanada, T., Kohase, H., Makino, K. & Umino, M. (2009) Effects of alphaadrenergic agonists on pain modulation in diffuse noxious inhibitory control. J. Med. Dent. Sci., 56, 17-24.
    • Schouenborg, J. & Dickenson, A. (1985) The effects of distant noxious stimulation on A and C fibre-evoked flexion reflexes and neuronal activity in the dorsal horn of the rat. Brain Res., 328, 23-32.
    • Schouenborg, J. & Kalliomaki, J. (1990) Functional organization of the nociceptive withdrawal reflexes. I. Activation of hindlimb muscles in the rat. Exp. Brain Res., 83, 67-78.
    • Sonohata, M., Furue, H., Katafuchi, T., Yasaka, T., Doi, A., Kumamoto, E. & Yoshimura, M. (2004) Actions of noradrenaline on substantia gelatinosa neurones in the rat spinal cord revealed by in vivo patch recording. J. Physiol., 555, 515-526.
    • Stillings, M.R., Chapleo, C.B., Butler, R.C.M., Davis, J.A., England, C.D., Myers, M., Myers, P.L., Tweddle, N., Welbourn, A.P., Doxey, J.C. & Smith, C.F.C. (1985) a-Adrenoreceptor reagents. 3. Synthesis of some 2-substituted 1,4-benzodioxans as selective presynaptic a2-adrenoreceptor antagonists. J. Med. Chem., 28, 1054-1062.
    • Takano, M., Takano, Y. & Yaksh, T.L. (1993) Release of calcitonin generelated peptide (CGRP), substance P (SP), and vasoactive intestinal polypeptide (VIP) from rat spinal cord: modulation by a2 agonists. Peptides, 14, 371-378.
    • Taylor, J.S., Neal, R.I., Harris, J., Ford, T.W. & Clarke, R.W. (1991) Prolonged inhibition of a spinal reflex after intense stimulation of distant peripheral nerves in the decerebrated rabbit. J. Physiol., 437, 71-83.
    • Terkelsen, A.J., Andersen, O.K., Hansen, P.O. & Jensen, T.S. (2001) Effects of heterotopic- and segmental counter-stimulation on the nociceptive withdrawal reflex in humans. Acta Physiol. Scand., 172, 211-217.
    • Tomlinson, R.W.W., Gray, B.G. & Dostrovsky, J.O. (1983) Inhibition of rat spinal cord dorsal horn neurons by non-segmental, noxious cutaneous stimuli. Brain Res., 279, 291-294.
    • Tsuruoka, M. & Willis, W.D. Jr (1996) Bilateral lesions in the area of the nucleus locus coeruleus affect the development of hyperalgesia during carrageenan-induced inflammation. Brain Res., 726, 233-236.
    • Tsuruoka, M., Maeda, M. & Inoue, T. (2004) Persistent hindpaw inflammation produces coeruleospinal antinociception in the non-inflamed forepaw of rats. Neurosci. Lett., 367, 66-70.
    • Ueda, M., Oyama, T., Kuraishi, Y., Akaike, A. & Satoh, M. (1995) Alpha2- adrenoceptor-mediated inhibition of capsaicin-evoked release of glutamate from rat spinal dorsal horn slices. Neurosci. Lett., 188, 137-139.
    • Viisanen, H. & Pertovaara, A. (2007) Influence of peripheral nerve injury on response properties of locus coeruleus neurons and coeruleospinal antinociception in the rat. Neuroscience, 146, 1785-1794.
    • Villanueva, L. & Le Bars, D. (1995) The activation of bulbo-spinal controls by peripheral nociceptive inputs: diffuse noxious inhibitory controls. Biol. Res., 28, 113-125.
    • Wei, H. & Pertovaara, A. (2006) Spinal and pontine alpha(2)-adrenoceptors have opposite effects on pain-related behavior in the neuropathic rat. Eur. J. Pharmacol., 551, 41-49.
    • Welbourn, A.P., Chapleo, C.B., Lane, A.C., Myers, P.L., Roach, A.G., Smith, C.F.C., Stillings, M.R. & Tulloch, I.F. (1986) a-Adrenoreceptor reagents. 4. Resolution of some potent selective prejunctional a2-adrenoreceptor antagonists. J. Med. Chem., 29, 2000-2003.
    • Wen, Y.-R., Wang, C.-C., Yeh, G.-C., Hsu, S.-F., Huang, Y.-J., Li, Y.-L. & Sun, W.-Z. (2010) DNIC-mediated analgesia produced by a supramaximal electrical or a high-dose formalin conditioning stimulus: roles of opioid and a2-adrenergic receptors. J. Biomed. Sci., 17, 19.
    • Weng, H.R. & Schouenborg, J. (1996) Cutaneous inhibitory receptive fields of withdrawal reflexes in the decerebrate spinal rat. J. Physiol., 493, 253-265.
    • Willer, J.C., Roby, A. & Le Bars, D. (1984) Psychophysical and electrophysiological approaches to the pain-relieving effects of heterotopic nociceptive stimuli. Brain, 107, 1095-1112.
    • Willer, J.C., De Broucker, T. & Le Bars, D. (1989) Encoding of nociceptive thermal stimuli by diffuse noxious inhibitory controls in humans. J. Neurophysiol., 62, 1028-1038.
    • Woolf, C.J. & Wall, P.D. (1986) Relative effectiveness of C primary afferent fibers of different origins in evoking a prolonged facilitation of the flexor reflex in the rat. J. Neurosci., 6, 1433-1442.
    • Xu, M., Kontinen, V.K. & Kalso, E. (1999) Endogenous noradrenergic tone controls symptoms of allodynia in the spinal nerve ligation model of neuropathic pain. Eur. J. Pharmacol., 366, 41-45.
    • Yamada, H. & Sano, Y. (1985) Distribution of serotonin nerve cells in the rabbit brain - immunohistochemistry by the two-step ABC technique using biotin-labeled rabbit serotonin-antibody. Arch. Histol. Jap., 48, 343-354.
    • Yarnitsky, D., Arendt-Nielsen, L., Bouhassira, D., Edwards, R.R., Fillingim, R.B., Granot, M., Hansson, P., Lautenbacher, S., Marchand, S. & WilderSmith, O. (2010) Recommendations on terminology and practice of psychophysical DNIC testing. Eur. J. Pain, 14, 339.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article