LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Publisher: IEEE Computer Society
Languages: English
Types: Part of book or chapter of book
Subjects: TK
The EPSRC pilot project Meeting the Design Challenges of nanoCMOS Electronics (nanoCMOS) is focused upon delivering a production level e-Infrastructure to meet the challenges facing the semiconductor industry in dealing with the next generation of ‘atomic-scale’ transistor devices. This scale means that previous assumptions on the uniformity of transistor devices in electronics circuit and systems design are no longer valid, and the industry as a whole must deal with variability throughout the design process. Infrastructures to tackle this problem must provide seamless access to very large HPC resources for computationally expensive simulation of statistic ensembles of microscopically varying physical devices, and manage the many hundreds of thousands of files and meta-data associated with these simulations. A key challenge in undertaking this is in protecting the intellectual property associated with the data, simulations and design process as a whole. In this paper we present the nanoCMOS infrastructure and outline an evaluation undertaken on the Storage Resource Broker (SRB) and the Andrew File System (AFS) considering in particular the extent that they meet the performance and security requirements of the nanoCMOS domain. We also describe how metadata management is supported and linked to simulations and results in a scalable and secure manner.

Share - Bookmark

Cite this article