LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Languages: English
Types: Doctoral thesis
Subjects: QD
Aza-sugars are naturally occurring polyhydroxylated alkaloids in which the ring oxygen is replaced by nitrogen. They are reported to have a wide range of biological properties, most importantly as glycosidase inhibitors; these glycosidases play a key role in various diseases like HIV, cancer and lysosomal storage disorders.\ud \ud This thesis will describe an approach to the synthesis of analogues and precursors of azasugar natural products in the indolizidine (for example castanospermine) and pyrrolizidine (for example hyacinthacine) using cyclopropenones and cyclic imines as key intermediates.\ud \ud This thesis contains work that is an extension of the work pioneered by Eicher and Heimgartner and followed by our group for the reaction of cyclic imines with diphenylcyclopropenone. The methodology was extended towards the synthesis of more complex bicyclic heterocycles like indolizidine and pyrrolizidine aza-sugars and is summarised by the following Scheme. In this thesis, cyclopropenones other than diphenylcyclopropenone were used.\ud \ud This work also extended the range of cyclic imines that can be reacted by using for the first time, the parent aldimines, polyhydroxylated cyclic aldimines synthesised from sugars and other substituted cyclic imines. The reactions gave bicyclic products but always with an extra oxygen at the bridge head postion (X= OH) via aerial oxidation of the initial product (X= H).
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 89. C. Yuanwei and P. Vogel, Tetrahedron Letters, 1992, 33, 4917-4920.
    • 90. Y. Chen and P. Vogel, The Journal of Organic Chemistry, 1994, 59, 2487-2496.
    • 91. S. Cunha, F. Damasceno and J. Ferrari, Tetrahedron Letters, 2007, 48, 5795-5798.
    • 92. A. Katritzky, Advances in Heterocyclic Chemistry, Elsevier, 1997.
    • 93. G. Negri, C. Kascheres and A. J. Kascheres, Journal of Heterocyclic Chemistry, 2004, 41, 461-491.
    • 94. C. M. Kascheres, Journal of the Brazilian Chemical Society, 2003, 14, 945-969.
    • 95. K. Komatsu and T. Kitagawa, Chemical Reviews, 2003, 103, 1371-1428.
    • 96. C. Kascheres, A. Kascheres and P. S. H. Pilli, The Journal of Organic Chemistry, 1980, 45, 5340-5343.
    • 97. A. Kascheres and R. A. F. Rodrigues, Tetrahedron, 1996, 52, 12919-12930.
    • 98. S. Cunha and A. Kascheres, Journal of the Brazilian Chemical Society, 2001, 12, 481-484.
    • 99. T. Eicher and D. Krause, Synthesis, 1986, 899-907.
    • 100. A. Kascheres, H. C. Schumacher and R. A. F. Rodrigues, Journal of Heterocyclic Chemistry, 1997, 34, 757-759.
    • 101. S. Friedrich, P. Roland, H. B. Jost and H. Heinz, Helvetica Chimica Acta, 1983, 66, 1366-1375.
    • 102. E. Klegraf, S. Knauer and H. Kunz, Angewandte Chemie International Edition, 2006, 45, 2623-2626.
    • 103. V. Di Bussolo, A. Fiasella, M. R. Romano, L. Favero, M. Pineschi and P. Crotti, Organic Letters, 2007, 9, 4479-4482.
    • 104. S. Kobayashi and H. Ishitani, Chemical Reviews, 1999, 99, 1069-1094.
    • 105. K. A. Jørgensen, Angewandte Chemie International Edition, 2000, 39, 3558-3588.
    • 106. Heintzelman, G. R, I. R. Meigh, Y. R. Mahajan and S. M. Weinreb, Diels-Alder Reactions of Imino Dienophiles, Organic Reactions, Inc., 2005.
    • 107. J. P. Vacca, Tetrahedron Letters, 1985, 26, 1277-1280.
    • 108. S. Danishefsky, M. E. Langer and C. Vogel, Tetrahedron Letters, 1985, 26, 5983- 5986.
    • 109. J. Shao and J.-S. Yang, The Journal of Organic Chemistry, 2012, 77, 7891-7900.
    • 110. T. M. Chapman, S. Courtney, P. Hay and B. G. Davis, Chemistry - A European Journal, 2003, 9, 3397-3414.
    • 111. A. Goti, F. Cardona and A. Brandi, Synlett, 1996, 761-763.
    • 112. L. Kürti and B. Czakó, Strategic Applications of Named Reactions in Organic Synthesis, Elsevier, 2005.
    • 113. R. J. Nash, L. E. Fellows, J. V. Dring, G. W. J. Fleet, A. E. Derome, T. A. Hamor, A. M. Scofield and D. J. Watkin, Tetrahedron Letters, 1988, 29, 2487-2490.
    • 114. G. A. Showell and J. S. Mills, Drug Discovery Today, 2003, 8, 551-556.
    • 115. J. P. Michael, Natural Product Reports, 2008, 25, 139-165.
    • 116. F. Stierli, R. Prewo, J. H. Bieri and H. Heimgartner, Helvetica Chimica Acta, 1983, 66, 1366-1375.
    • 117. K. Hemming, A. D. Redhouse, R. K. Smalley, J. Robin Thompson, P. D. Kennewell and R. Westwood, Tetrahedron Letters, 1992, 33, 2231-2234.
    • 118. T. Eicher and R. Rohde, Synthesis, 1985, 619-625.
    • 119. T. Eicher, F. Abdesaken, G. Franke and J. L. Weber, Tetrahedron Letters, 1975, 16, 3915-3918.
    • 120. T. Eicher, J. L. Weber and G. Chatila, Justus Liebigs Annalen der Chemie, 1978, 1203-1221.
    • 121. K. Hemming, P. A. O'Gorman and M. I. Page, Tetrahedron Letters, 2006, 47, 425- 428.
    • 122. P. A. O'Gorman, T. Chen, H. E. Cross, S. Naeem, A. Pitard, M. I. Qamar and K. Hemming, Tetrahedron Letters, 2008, 49, 6316-6319.
    • 123. V. V. R. Kondakal, M. Ilyas Qamar and K. Hemming, Tetrahedron Letters, 2012, 53, 4100-4103.
    • 124. K. Hemming, M. N. Khan, V. V. R. Kondakal, A. Pitard, M. I. Qamar and C. R. Rice, Organic Letters, 2011, 14, 126-129.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article