Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Zhang, Xianting; Yuan, Jinhui; Wang, Kuiru; Kang, Zhe; Yan, Binbin; Sang, Xinzhu; Wu, Qiang; Yu, Chongxiu; Farrell, Gerald (2015)
Publisher: IEEE
Languages: English
Types: Article
Subjects: H600
In this paper, we investigate the strong modulation instability (MI) at telecommunication band in a silicon-organic hybrid slot waveguide. The organic material of polymer poly (bis para-toluene sulfonate) of 2, 4-hexadiyne 1, 6 diol (PTS), which has high third-order nonlinear refractive index and very low two-photon absorption, is used to fill the slot of the waveguide. The optical gain can be up to ~3600 m-1 with a low pump peak power of 300 mW. By using Gaussian pulses with width of 10 ps and peak power of 250 mW, deep modulation of the pump is achieved, and the ultrashort pulse trains with the periods of 27 and 24 fs are obtained in the anomalous and normal group-velocity dispersion regions, respectively.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • [1] M. A. Foster et al., “Broad-band optical parametric gain on a silicon photonic chip,” Nature., vol. 441, no. 7096, pp. 960-963, May 2006.
    • [2] S. Lavdas et al., “Wavelength conversion and parametric amplification of optical pulses via quasi-phase-matched four-wave mixing in long-period Bragg silicon waveguides,” Opt. Lett., vol. 39, no. 13, pp. 4017-4020, Jul. 2014.
    • [3] Y. Zhang et al., “Performance analysis of dual-pump optical parametric amplifiers in silicon waveguide,” Opt. Commun., vol. 283, no. 15, pp. 3043-3048, Aug. 2010.
    • [4] H. Rong et al., “A continuous Raman silicon laser,” Nature., vol. 433, pp. 725-728, Jan. 2005.
    • [5] H. Rhee et al., “Operation of a Raman laser in bulk silicon,” Opt. Lett., vol. 36, no. 9, pp. 1644-1646, May 2011.
    • [6] F. De Leonardis, B. Troia, and V. M. N. Passaro, “Design rules for Raman lasers based on SOI racetrack resonators,” IEEE Photon. J., vol. 5, no. 6, Dec. 2013, Art. ID. 1502431.
    • [7] Y. Huang, P. Shum, and C. Lin, “Proposal for loss reduction and output enhancement of silicon Raman laser using bi-directional pumping scheme,” Opt. Commun., vol. 283, no. 7, pp. 1389-1393, Apr. 2010.
    • [8] X. Zhang et al., “Enhanced broadband parametric wavelength conversion in silicon waveguide with the multi-period grating,” IEEE Photon. J., vol. 6, no. 6, Dec. 2014, Art ID. 6601410.
    • [9] Y. Huang et al., “Wavelength conversion bandwidth enhancement through quasi-phase-matching in a width modulated silicon waveguide,” presented at the Opt. Fiber Commun. Conf./Nat. Fiber Optic Eng. Conf., Mar. 17-21, 2013, Paper JTh2A.33.
    • [10] Y. Okawachi, A. L. Gaeta, and M. Lipson, “Breakthroughs in nonlinear silicon photonics 2011,” IEEE Photon. J., vol. 4, no. 2, pp. 600-606, Apr. 2012.
    • [11] Z. Kang et al., “CMOS-compatible 2-bit optical spectral quantization scheme using a silicon-nanocrystal-based horizontal slot waveguide,” Sci. Rep., vol. 4, p. 7177, Nov. 2014.
    • [12] N. C. Panoiu, X. Chen, and R. M. Osgood, Jr., “Modulation instability in silicon photonic nanowires,” Opt. Lett., vol. 31, no. 24, pp. 3609-3611, Dec. 2006.
    • [13] L. M. Mandeng and C. Tchawoua, “Impact of input profile, absorption coefficients, and chirp on modulational instability of femtosecond pulses in silicon waveguides under fourth-order dispersion,” J. Opt. Soc. Amer. B., vol. 30, no. 5, pp. 1382-1391, May 2013.
    • [14] L. An, H. Liu, Q. Sun, N. Huang, and Z. Wang, “Wavelength conversion in highly nonlinear silicon-organic hybrid slot waveguides,” Appl. Opt., vol. 53, no. 22, pp. 4886-4893, Aug. 2014.
    • [15] C. Koos et al., “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photon., vol. 3, pp. 216-219, Apr. 2009.
    • [16] S. Polyakov, F. Yoshino, M. Liu, and G. Stegeman, “Nonlinear refraction and multiphoton absorption in polydiacetylenes from 1200 to 2200 nm,” Phys. Rev B., vol. 69, no. 11, Mar. 2004, Art. ID. 115421.
    • [17] E. Jordana et al., “Deep-UV lithography fabrication of slot waveguides and sandwiched waveguides for nonlinear applications,” in Proc. 4th IEEE Int. Conf. Group IV Photon., 2007, pp. 1-3, ThC3.
    • [18] K. Preston and M. Lipson, “Slot waveguides with polycrystalline silicon for electrical injection,” Opt. Express, vol. 17, no. 3, pp. 1527-1534, Feb. 2009.
    • [19] V. R. Almeida, Q. Xu, C. A. Barrios, and M. Lipson, “Guiding and confining light in void nanostructure,” Opt. Lett., vol. 29, no. 11, pp. 1209-1211, Jun. 2004.
    • [20] Q. Xu, V. R. Almeida, R. R. Panepucci, and M. Lipson, “Experimental demonstration of guiding and confining light in nanometer-size low-refractive-index material,” Opt. Lett., vol. 29, no. 14, pp. 1626-1628, Jul. 2004.
    • [21] L. Yin and G. P. Agrawal, “Impact of two-photon absorption on self-phase modulation in silicon waveguides,” Opt. Lett., vol. 32, no. 14, pp. 2031-2033, Jul. 2007.
    • [22] H. K. Tsang et al., “Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5 mm wavelength,” Appl. Phys. Lett., vol. 80, no. 3, pp. 416-418, Jan. 2002.
    • [23] B. Kuyken et al., “50 dB parametric on-chip gain in silicon photonic wires,” Opt. Lett., vol. 36, no. 22, pp. 4401-4403, Nov. 2011.
    • [24] G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. San Diego, CA, USA: Academic, 2007.
    • [25] S. Jyu et al., “250-GHz passive harmonic mode-locked Er-doped fiber laser by dissipative four-wave mixing with silicon-based micro-ring,” IEEE Photon. J., vol. 5, no. 5, Oct. 2013, Art. ID. 1502107.
    • [26] X. Li et al., “Wavelength-switchable and wavelength-tunable all-normal-dispersion mode-locked Yb-doped fiber laser based on single-walled carbon nanotube wall paper absorber,” IEEE Photon. J., vol. 4, no. 1, pp. 234-241, Feb. 2012.
    • [27] C.-S. Bres, N. Alice, A. H. Gnauck, R. M. Jopson, and S. Radic, “Multicast parametric synchronous sampling,” IEEE Photon. Technol. Lett., vol. 20, no. 14, pp. 1222-1224, Jul. 2008.
    • [28] X. Zhang et al., “Scheme for multicast parametric synchronous optical sampling,” Opt. Eng., vol. 53, no. 5, May 2014, Art. ID. 056102.
    • [29] C.-S. Brès et al., “Optical demultiplexing of 320Gb/s to 8 40 Gb/s in single parametric gate,” J. Lightw. Technol., vol. 28, no. 4, pp. 434-442, Feb. 2010.
    • [30] S. Roy, S. K. Bhadra, and G. P. Agrawal, “Effects of higher-order dispersion on resonant dispersive waves emitted by solitons,” Opt. Lett., vol. 34, no. 13, pp. 2072-2074, Jul. 2009.
    • [31] J. Peng, F. Zhu, F. Benabid, and A. V. Sokolov, “Carrier-envelope offset frequency measurement for tunable femtosecond lasers using resonant dispersive waves,” Opt. Lett., vol. 36, no. 6, pp. 891-893, Mar. 2011.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article