Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Lei, Ka-Meng; Heidari, Hadi; Mak, Pui-In; Law, Man-Kay; Maloberti, Franco; Martins, Rui P. (2017)
Publisher: Institute of Electrical and Electronics Engineers
Languages: English
Types: Article
Subjects: T1
We report a micro-nuclear magnetic resonance (NMR) system compatible with multi-type biological/chemical lab-on-a-chip assays. Unified in a handheld scale (dimension: 14 x 6 x 11 cm³, weight: 1.4 kg), the system is capable to detect<100 pM of Enterococcus faecalis derived DNA from a 2.5 μL sample. The key components are a portable magnet (0.46 T, 1.25 kg) for nucleus magnetization, a system PCB for I/O interface, an FPGA for system control, a current driver for trimming the magnetic (B) field, and a silicon chip fabricated in 0.18 μm CMOS. The latter, integrated with a current-mode vertical Hall sensor and a low-noise readout circuit, facilitates closed-loop B-field stabilization (2 mT → 0.15 mT), which otherwise fluctuates with temperature or sample displacement. Together with a dynamic-B-field transceiver with a planar coil for micro-NMR assay and thermal control, the system demonstrates: 1) selective biological target pinpointing; 2) protein state analysis; and 3) solvent-polymer dynamics, suitable for healthcare, food and colloidal applications, respectively. Compared to a commercial NMR-assay product (Bruker mq-20), this platform greatly reduces the sample consumption (120x), hardware volume (175x), and weight (96x).
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • [1] G. Gauglitz, “Point-of-care platforms,” Annu. Rev. Anal. Chem., vol. 7, pp. 297-315, Jun. 2014.
    • [2] P. Neužil, C. D. M. Campos, C. C. Wong, J. B. W. Soon, J. Reboud, and A. Manz, “From chip-in-a-lab to lab-on-a-chip: towards a single handheld electronic system for multiple application-specific lab-on-achip (ASLOC),” Lab Chip, vol. 14, no. 13, pp. 2168-2176, Jul. 2014.
    • [3] H. Shafiee, S. Wang, F. Inci, M. Toy, T. J. Henrich, D. R. Kuritzkes, and U. Demirci, “Emerging technologies for point-of-care management of HIV infection,” Annu. Rev. Med., vol. 66, pp. 387-405, Jan. 2015.
    • [4] World Health Organization. Major causes of death [online]. Available: http://www.who.int/mediacentre/factsheets/fs310/en/index2.html [5] J. P. Lafleur, A. Jönsson, S. Senkbeil, and J. P. Kutter, “Recent advances in lab-on-a-chip for biosensing applications,” Biosens. Bioelectron., vol. 76, pp. 213-233, Feb. 2016.
    • [6] M. Zuiderwijk, H. J. Tanke, R. S. Niedbala, and P. L. A. M. Corstjens, “An amplification-free hybridization-based DNA assay to detect Streptococcus pneumoniae utilizing the up-converting phosphor technology,” Clin. Biochem., vol. 36, no. 5, pp. 401-403, Jul. 2003.
    • [7] G. A. Posthuma-Trumpie, J. Korf, and A. van Amerongen, “Lateral flow (immuno)assay: its strengths, weaknesses, opportunities and threats. A literature survey,” Anal. Bioanal. Chem., vol. 393, no. 2, pp. 569-582, Jan. 2009.
    • [8] S. K. Arya, C. C. Wong, Y. J. Jeon, T. Bansal, and M. K. Park, “Advances in complementary-metal-oxidesemiconductor-based integrated biosensor arrays,” Chem. Rev., vol. 115, no. 11, pp. 5116-5158, Jun. 2015.
    • [9] H. J. Yoo and C. van Hoof, Bio-Medical CMOS ICs. New York: Springer, 2011.
    • [10] B. Jang, P. Cao, A. Chevalier, A. Ellington, and A. Hassibi, “A CMOS fluorescent-based biosensor microarray,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers (ISSCC), 2009, pp. 436-437.
    • [11] K.-H. Lee, S. Choi, J. O. Lee, J.-B. Yoon, and G.-H. Cho, “CMOS capacitive biosensor with enhanced sensitivity for label-free DNA detection,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers (ISSCC), 2012, pp. 120-121.
    • [12] H. M. Jafari, K. Abdelhalim, L. Soleymani, E. H. Sargent, S. O. Kelley, and R. Genov, “Nanostructured CMOS wireless ultra-wideband label-free PCR-free DNA analysis SoC,” IEEE J. Solid-State Circuits, vol. 49, no. 5, pp. 1223-1241, May 2014.
    • [13] D. A. Hall, J. S. Daniels, B. Geuskens, N. Tayebi, G. M. Credo, D. J. Liu, et al., “A nanogap transducer array on 32 nm CMOS for electrochemical DNA sequencing,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers (ISSCC), 2016, pp. 288-289.
    • [14] P.-H. Kuo, J.-C. Kuo, H.-T. Hsueh, J.-Y. Hsieh, Y.-C. Huang, T. Wang, et al., “A smart CMOS assay SoC for rapid blood screening test of risk prediction,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers (ISSCC), 2015, pp. 390-391.
    • [15] D. A. Hall, R. S. Gaster, K. A. A. Makinwa, S. X. Wang, and B. Murmann, “A 256 pixel magnetoresistive biosensor microarray in 0.18μm CMOS,” IEEE J. Solid-State Circuits, vol. 48, no. 5, pp. 1290-1301, May 2013.
    • [16] R. Thewes, “Introduction to CMOS-based DNA microarrays,” in Smart sensor systems: emerging technologies and applications, G. Meijer, K. Makinwa, and M. Pertijs, United Kingdom: John Wiley & Sons Ltd, ch. 6, 2014.
    • [17] L. Josephson, J. M. Perez, and R. Weissleder, “Magnetic nanosensors for the detection of oligonucleotide sequences,” Angew. Chem. Int. Ed., vol. 40, no. 17, pp. 3204-3206, Sep. 2001.
    • [18] J. M. Perez, L. Josephson, T. O'Loughlin, D. Högemann, and R. Weissleder, “Magnetic relaxation switches capable of sensing molecular interactions,” Nat. Biotechnol., vol. 20, no. 8, pp. 816-820, Aug. 2002.
    • [19] H. Lee, E. Sun, D. Ham, and R. Weissleder, “Chip-NMR biosensor for detection and molecular analysis of cells,” Nat. Med., vol. 14, no. 8, pp. 869-874, Aug. 2008.
    • [20] N. Sun, Y. Liu, H. Lee, R. Weissleder, and D. Ham, “CMOS RF biosensor utilizing nuclear magnetic resonance,” IEEE J. Solid-State Circuits, vol. 44, no. 5, pp. 1629-1643, May 2009.
    • [21] N. Sun, T.-J. Yoon, H. Lee, W. Andress, R. Weissleder, and D. Ham, “Palm NMR and 1-chip NMR,” IEEE J. Solid-State Circuits, vol. 46, no. 1, pp. 342-352, Jan. 2011.
    • [22] D. Ha, J. Paulsen, N. Sun, Y.-Q. Song, and D. Ham, “Scalable NMR spectroscopy with semiconductor chips,” Proc. Nat. Acad. Sci. (PNAS), vol. 111, no. 33, pp. 11955-11960, Aug. 2014.
    • [23] K.-M. Lei, P.-I. Mak, M.-K. Law, and R. P. Martins, “A μNMR CMOS transceiver using a Butterfly-coil input for integration with a digital microfluidic device inside a portable magnet,” IEEE J. Solid-State Circuits, to be published.
    • [24] K.-M. Lei, H. Heidari, P.-I. Mak, M.-K. Law, F. Maloberti, and R. P. Martins, “A handheld 50pMsensitivity micro-NMR CMOS platform with B-field stabilization for multi-type biological/chemical assays,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers (ISSCC), 2016, pp. 474-475.
    • [25] N. E. Jacobsen, NMR spectroscopy explained. New Jersey: John Wiley & Sons, Inc, 2007.
    • [26] G. A. Morris, H. Barjat, and T. J. Horne, “Reference deconvolution methods,” Prog. Nucl. Magn. Reson. Spectrosc., vol. 31, no. 2-3, pp. 197-257, Sept. 1997.
    • [27] Ē. Kupče, and R. Freeman, “Molecular structure from a single NMR sequence (fast-PANACEA),” J. Magn. Reson., vol. 206, no. 1, pp. 147-153, Sept. 2010.
    • [28] K.-M. Lei, P.-I. Mak, M.-K. Law, and R. P. Martins, “A palm-size µNMR relaxometer using a digital microfluidic device and a semiconductor transceiver for chemical/biological diagnosis,” Analyst, vol. 140, no.15, pp. 5129-5137, Aug. 2015.
    • [29] H. Y. Carr and E. M. Purcell, “Effects of diffusion on free precession in nuclear magnetic resonance experiments,” Phys. Rev., vol. 94, no. 3, pp. 630-638, May 1954.
    • [30] S. Meiboom and D. Gill, “Modified spin-echo method for measuring nuclear relaxation times,” Rev. Sci. Instrum., vol. 29, no. 8, pp. 688-691, Aug. 1958.
    • [31] S. D'Amico, M. Conta, and A. Baschirotto, “A 4.1-mW 10-MHz fourth-order source-follower-based continuous-time filter with 79-dB DR,” IEEE J. Solid-State Circuits, vol. 41, no. 12, pp. 2713-2719, Dec. 2006.
    • [32] J. Watzlaw, S. Glöggler, B. Blümich, W. Mokwa, and U. Schnakenberg, “Stacked planar micro coils for single-sided NMR applications,” J. Magn. Reson., vol. 230, pp. 176-185, May 2013.
    • [33] J. Jiang, W. J. Kindt, and K. A. A. Makinwa, “A continuous-time ripple reduction technique for spinningcurrent Hall sensors,” IEEE J. Solid-State Circuits, vol. 49, no. 7, pp. 1525-1534, Jul. 2014.
    • [34] H. Heidari, E. Bonizzoni, U. Gatti, and F. Maloberti, “A CMOS current-mode magnetic Hall sensor with integrated front-end,” IEEE Trans. Circuits Syst. I Regul. Pap., vol. 62, no. 5, pp. 1270-1278, May 2015.
    • [35] J. Jiang and K. Makinwa, “A hybrid multipath CMOS magnetic sensor with 210μTrms resolution and 3MHz bandwidth for contactless current sensing,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers (ISSCC), 2016, pp. 204-205.
    • [36] G.-M. Sung and C.-P. Yu, “2-D differential folded vertical Hall device fabricated on a P-type substrate using CMOS technology,” IEEE Sensors J., vol. 13, no. 6, pp. 2253-2262, Jun. 2013.
    • [37] C. Sander, M.-C. Vecchi, M. Cornils, and O. Paul, “From three-contact vertical hall elements to symmetrized vertical hall sensors with low offset,” Sens. Actuators, A, vol. 240, pp. 92-102, Apr. 2016.
    • [38] D. Kim, B. Goldstein, W. Tang, F. J. Sigworth, and E. Culurciello, “Noise analysis and performance comparison of low current measurement systems for biomedical applications,” IEEE Trans. Biomed. Circuits Syst., vol. 7, no. 1, pp. 52-62, Feb. 2013.
    • [39] M. Crescentini, M. Bennati, M. Carminati, and M. Tartagni, “Noise limits of CMOS current interfaces for biosensors: A review,” IEEE Trans. Biomed. Circuits Syst., vol. 8, no. 2, pp. 278-292, Apr. 2014.
    • [40] K.-M. Lei, H. Heidari, P.-I. Mak, M.-K. Law, and F. Maloberti, “Exploring the noise limits of fullydifferential micro-watt transimpedance amplifiers for Sub-pA/√Hz sensitivity,” in 11th Conf. Ph.D. Res. Microelectron. Electron. (PRIME), 2015, pp. 290-293.
    • [41] K. N. Leung and P. K. T. Mok, “Analysis of multistage amplifier-frequency compensation,” IEEE Trans. Circuits Syst. I, vol. 48, no. 9, pp. 1041-1056, Sep. 2001.
    • [42] Datasheet of NMR permanent magnet PM-1055, [online]. Available: http://metrolab.com/wpcontent/uploads/2015/07/PM1055_broch.pdf
    • [43] C. Min, H. Shao, M. Liong, T.-J. Yoon, R. Weissleder, and H. Lee, “Mechanism of magnetic relaxation switching sensing,” ACS Nano, vol. 6, no. 8, pp. 6821-6828, Aug. 2012.
    • [44] L. Indrawati, R. L. Stroshine, and G. Narsimhan, “Low-field NMR: A tool for studying protein aggregation,” J. Sci. Food Agric., vol. 87, pp. 2207-2216, Sep. 2007.
    • [45] B. Sierra-Martίn, J. R. Retama, M. Laurenti, A. F. Barbero, and E. L. Cabarcos, “Structure and polymer dynamics within PNIPAM-based microgel particles,” Adv. Colloid Interface Sci., vol. 205, pp. 113-123, Mar. 2014.
    • [46] D. H. Gultekin and J. C. Gore, “Temperature dependence of nuclear magnetization and relaxation,” J. Magn. Reson., vol. 172, no. 1, pp. 133-141, Jan. 2005.
    • [47] L. Vermeir, M. Balcaen, P. Sabatino, K. Dewettinck, P. V. der Meeren, “Influence of molecular exchange on the enclosed water volume fraction of W/O/W double emulsions as determined by low-resolution NMR diffusometry and T2-relaxometry,” Colloids Surf., A, vol. 456, pp. 129-138, Aug. 2014.
    • [48] Bruker Minispec Contrast Agent Analyzer, [online]. Available: https://www.bruker.com/products/mr/td-nmr/minispec-mq-series/mq-contrast-agentanalyzer/overview.html
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article