LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Taxidis, Ioannis
Languages: English
Types: Unknown
Subjects:

Classified by OpenAIRE into

mesheuropmc: nervous system
The standard memory consolidation model assumes that new memories are temporarily stored in the hippocampus and later transferred to the neocortex, during deep sleep, for long-term storage, signifying the importance of studying functional and structural cortico-hippocampal interactions. Our work offers a thorough analysis on such interactions between neocortex and hippocampus, along with a detailed study of their intrinsic dynamics, from two complementary perspectives: statistical data analysis and computational modelling.\ud \ud The first part of this study reviews mathematical tools for assessing directional interactions in multivariate time series. We focus on the notion of Granger Causality and the\ud related measure of generalised Partial Directed Coherence (gPDC) which we then apply, through a custom built numerical package, to electrophysiological data from the medial prefrontal cortex (mPFC) and hippocampus of anaesthetized rats. Our gPDC analysis reveals a clear lateral-to-medial hippocampus connectivity and suggests a reciprocal information flow between mPFC and hippocampus, altered during cortical activity.\ud \ud The second part deals with modelling sleep-related intrinsic rhythmic dynamics of the two areas, and examining their coupling. We first reproduce a computational model of the cortical slow oscillation, a periodic alteration between activated (UP) states and neuronal silence. We then develop a new spiking network model of hippocampal areas CA3 and CA1, reproducing many of their intrinsic dynamics and exhibiting sharp wave-ripple complexes, suggesting a novel mechanism for their generation based on CA1 interneuronal activity and recurrent inhibition. We finally couple the two models to study interactions between the slow oscillation and hippocampal activity. Our simulations propose a dependence of the correlation between UP states and hippocampal spiking on the excitation-to-inhibition ratio induced by the mossy fibre input to CA3 and by a combination of the Schaffer collateral and temporoammonic input to CA1. These inputs are shown to affect reported correlations between UP states and ripples.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • [10] L.A. Baccala and K. Sameshima. Directed Coherence: a tool for exploring functional interactions among brain structures. Methods for neural ensemble recordings, pages 179-192, 1998.
    • [11] L.A. Baccal´a and K. Sameshima. Partial directed coherence: a new concept in neural structure determination. Biological Cybernetics, 84(6):463-474, 2001.
    • [12] L.A. Baccala, D.Y. Takahashi, and K. Sameshima. Generalized partial directed coherence. 15th International Conference on Digital Signal Processing, pages 163- 166, 2007.
    • [13] M.S. Bartlett. Smoothing Periodograms from Time-Series with Continuous Spectra. Nature, 161(4096):686-687, 1948.
    • [14] M. Bartos, I. Vida, M. Frotscher, J.R.P. Geiger, and P. Jonas. Rapid signaling at inhibitory synapses in a dentate gyrus interneuron network. Journal of Neuroscience, 21(8):2687-2698, 2001.
    • [15] M. Bartos, I. Vida, M. Frotscher, A. Meyer, H. Monyer, J.R.P. Geiger, and P. Jonas. Fast synaptic inhibition promotes synchronized gamma oscillations in hippocampal interneuron networks. Proceedings of the National Academy of Sciences of the United States of America, 99(20):13222-13227, 2002.
    • [16] M. Bartos, I. Vida, and P. Jonas. Synaptic mechanisms of synchronized gamma oscillations in inhibitory interneuron networks. Nature Reviews Neuroscience, 8(1):45-56, 2007.
    • [17] F.P. Battaglia, G.R. Sutherland, and B.L. McNaughton. Hippocampal sharp wave bursts coincide with neocortical “up-state” transitions. Learning and Memory, 11(6):697-704, 2004.
    • [18] M. Bazhenov, I. Timofeev, M. Steriade, and T.J. Sejnowski. Model of thalamocortical slow-wave sleep oscillations and transitions to activated states. Journal of Neuroscience, 22(19):8691-8704, 2002.
    • [19] C.J. Behrens, L.P. van den Boom, L. de Hoz, A. Friedman, and U. Heinemann. Induction of sharp wave-ripple complexes in vitro and reorganization of hippocampal networks. Nature neuroscience, 8(11):1560-1567, 2005.
    • [22] C. Bernard and H.V. Wheal. Model of local connectivity patterns in CA3 and CA1 areas of the hippocampus. Hippocampus, 4(5):497-529, 1994.
    • [23] C. Bernasconi and P. KoE`nig. On the directionality of cortical interactions studied by structural analysis of electrophysiological recordings. Biological Cybernetics, 81(3):199-210, 1999.
    • [24] M. Both, F. B¨ahner, O.B. und Halbach, and A. Draguhn. Propagation of specific network patterns through the mouse hippocampus. Hippocampus, 18(9):899-908, 2008.
    • [25] P.J. Brockwell, R.A. Davis, and I. NetLibrary. Introduction to time series and forecasting. Springer New York, 2002.
    • [26] A. Brovelli, M. Ding, A. Ledberg, Y. Chen, R. Nakamura, and S.L. Bressler. Beta oscillations in a large-scale sensorimotor cortical network: Directional influences revealed by Granger causality. Proceedings of the National Academy of Sciences, 101(26):9849-9854, 2004.
    • [27] N. Brunel and X.J. Wang. What determines the frequency of fast network oscillations with irregular neural discharges? I. Synaptic dynamics and excitationinhibition balance. Journal of Neurophysiology, 90(1):415-430, 2003.
    • [28] S.L. Buchanan, R.H. Thompson, B.L. Maxwell, and D.A. Powell. Efferent connections of the medial prefrontal cortex in the rabbit. Experimental Brain Research, 79(2):469-483, 1994.
    • [29] P.S. Buckmaster and F.E. Dudek. In vivo intracellular analysis of granule cell axon reorganization in epileptic rats. Journal of Neurophysiology, 81(2):712-721, 1999.
    • [30] E.H. Buhl, S.R. Cobb, K. Halasy, and P. Somogyi. Properties of unitary IPSPs evoked by anatomically identified basket cells in the rat hippocampus. European Journal of Neuroscience, 7(9):1989-2004, 1995.
    • [31] E.H. Buhl, K. Halasy, and P. Somogyi. Diverse sources of hippocampal unitary inhibitory postsynaptic potentials and the number of synaptic release sites. Nature, 368(6474):823-828, 1994.
    • [32] G. Buzsaki. Hippocampal sharp waves: their origin and significance. Brain Research, 398(2):242-252, 1986.
    • [33] G. Buzsaki. Rhythms of the Brain. Oxford University Press, USA, 2006.
    • [34] G. Buzsaki, Z. Horvath, R. Urioste, J. Hetke, and K. Wise. High-frequency network oscillation in the hippocampus. Science, 256(5059):1025-1027, 1992.
    • [35] G.O. Buzsaki. Memory consolidation during sleep: a neurophysiological perspective. Journal of Sleep Research, 7(S1):17-23, 1998.
    • [36] A.J. Cadotte, T.B. DeMarse, P. He, and M. Ding. Causal Measures of Structure and Plasticity in Simulated and Living Neural Networks. PLoS ONE, 3(10):e3355, 2008.
    • [37] R.C. Cannon, H.V. Wheal, and D.A. Turner. Dendrites of classes of hippocampal neurons differ in structural complexity and branching patterns. The Journal of Comparative Neurology, 413(4):619-633, 1999.
    • [38] D.B. Carr and S.R. Sesack. Hippocampal afferents to the rat prefrontal cortex: synaptic targets and relation to dopamine terminals. The Journal of Comparative Neurology, 369(1):1-15, 1996.
    • [39] C. Chatfield. The Analysis of Time Series: An Introduction. Chapman & Hall/CRC, 2004.
    • [40] C.C. Chow, J.A. White, J. Ritt, and N. Kopell. Frequency control in synchronized networks of inhibitory neurons. Journal of Computational Neuroscience, 5(4):407- 420, 1998.
    • [41] J.J. Chrobak and G. Buzsaki. High-frequency oscillations in the output networks of the hippocampal-entorhinal axis of the freely behaving rat. Journal of Neuroscience, 16(9):3056-3066, 1996.
    • [42] V.R.J. Clarke, B.A. Ballyk, K.H. Hoo, A. Mandelzys, A. Pellizzari, C.P. Bath, J. Thomas, E.F. Sharpe, C.H. Davies, P.L. Ornstein, et al. A hippocampal GluR5 kainate receptor regulating inhibitory synaptic transmission. Nature, 389(6651):599-603, 1997.
    • [43] S.R. Cobb, E.H. Buhl, K. Halasy, O. Paulsen, and P. Somogyi. Synchronization of Neuronal-Activity in Hippocampus by Individual GABAergic Interneurons. Nature, 378(6552):75-78, 1995.
    • [44] S.R. Cobb, K. Halasy, I. Vida, G. Nyiri, G. Tamas, E.H. Buhl, and P. Somogyi. Synaptic effects of identified interneurons innervating both interneurons and pyramidal cells in the rat hippocampus. Neuroscience, 79(3):629-648, 1997.
    • [45] C.M. Colbert and W.B. Levy. Electrophysiological and pharmacological characterization of perforant path synapses in CA1: mediation by glutamate receptors. Journal of Neurophysiology, 68(1):1-8, 1992.
    • [46] A. Compte, R. Reig, V.F. Descalzo, M.A. Harvey, G.D. Puccini, and M.V. Sanchez-Vives. Spontaneous high-frequency (10-80 Hz) oscillations during up states in the cerebral cortex in vitro. Journal of Neuroscience, 28(51):13828- 13844, 2008.
    • [47] A. Compte, M.V. Sanchez-Vives, D.A. McCormick, and X.J. Wang. Cellular and network mechanisms of slow oscillatory activity (< 1 Hz) and wave propagations in a cortical network model. Journal of Neurophysiology, 89(5):2707-2725, 2003.
    • [48] D. Contreras, A. Destexhe, T.J. Sejnowski, and M. Steriade. Control of spatiotemporal coherence of a thalamic oscillation by corticothalamic feedback. Science, 274(5288):771-774, 1996.
    • [49] D. Contreras and M. Steriade. Cellular basis of EEG slow rhythms: a study of dynamic corticothalamic relationships. Journal of Neuroscience, 15(1):604-622, 1995.
    • [50] B. Coomber, M.F. O'Donoghue, and R. Mason. Inhibition of endocannabinoid metabolism attenuates enhanced hippocampal neuronal activity induced by kainic acid. Synapse, 62(10):746-755, 2008.
    • [51] S. Coombes and P.C. Bressloff. Bursting: The genesis of rhythm in the nervous system. World Scientific Pub Co Inc, 2005.
    • [52] R. Cossart, R. Tyzio, C. Dinocourt, M. Esclapez, JC Hirsch, Y. Ben-Ari, and C. Bernard. Presynaptic kainate receptors that enhance the release of GABA on CA1 hippocampal interneurons. Neuron, 29(2):497-508, 2001.
    • [53] J. Csicsvari, H. Hirase, A. Czurko, A. Mamiya, and G. Buzsaki. Oscillatory coupling of hippocampal pyramidal cells and interneurons in the behaving rat. Journal of Neuroscience, 19(1):274-287, 1999.
    • [54] J. Csicsvari, H. Hirase, A. Mamiya, and G. Buzs´aki. Ensemble patterns of hippocampal CA3-CA1 neurons during sharp wave-associated population events. Neuron, 28(2):585-594, 2000.
    • [55] J. Cui, L. Xu, S.L. Bressler, M. Ding, and H. Liang. BSMART: a Matlab/C toolbox for analysis of multichannel neural time series. Neural Networks, 21(8):1094-1104, 2008.
    • [56] V. Cutsuridis, B. Graham, S. Cobb, and I. Vida. Hippocampal Microcircuits: A Computational Modeler's Resource Book. Springer Verlag, 2010.
    • [57] E. Degenetais, A.M. Thierry, J. Glowinski, and Y. Gioanni. Synaptic influence of hippocampus on pyramidal cells of the rat prefrontal cortex: an in vivo intracellular recording study. Cerebral Cortex, 13(7):782-792, 2003.
    • [58] A. Destexhe. Sleep Oscillations. Encyclopedia of Neuroscience, 8:1037-1044, 2009.
    • [59] A. Destexhe, D. Contreras, and M. Steriade. Spatiotemporal analysis of local field potentials and unit discharges in cat cerebral cortex during natural wake and sleep states. Journal of Neuroscience, 19(11):4595-4608, 1999.
    • [60] A. Destexhe and TJ Sejnowski. Interactions between membrane conductances underlying thalamocortical slow-wave oscillations. Physiological reviews, 83(4):1401- 1453, 2003.
    • [61] J. Deuchars and A.M. Thomson. CA1 pyramid-pyramid connections in rat hippocampus in vitro: dual intracellular recordings with biocytin filling. Neuroscience, 74(4):1009-1018, 1996.
    • [62] K. Diba and G. Buzs´aki. Forward and reverse hippocampal place-cell sequences during ripples. Nature neuroscience, 10(10):1241-1242, 2007.
    • [63] C.T. Dickson, T.D. Wolansky, and J.W. Kerber. Neocortical modulation of the hippocampal slow oscillation via the entorhinal cortex. Soc Neurosci Abstr 31:275.273, 2005.
    • [64] M. Ding, S.L. Bressler, W. Yang, and H. Liang. Short-window spectral analysis of cortical event-related potentials by adaptive multivariate autoregressive modeling: data preprocessing, model validation, and variability assessment. Biological Cybernetics, 83(1):35-45, 2000.
    • [65] A. Draguhn, R.D. Traub, D. Schmitz, and J.G.R. Jefferys. Electrical coupling underlies high-frequency oscillations in the hippocampus in vitro. Nature, 394(6689):189-192, 1998.
    • [66] H. Eichenbaum. A cortical-hippocampal system for declarative memory. Nature Reviews Neuroscience, 1(1):41-50, 2000.
    • [67] M. Eichler. On the Evaluation of Information Flow in Multivariate Systems by the Directed Transfer Function. Biological Cybernetics, 94(6):469-482, 2006.
    • [68] T.J. Ellender, W. Nissen, L.L. Colgin, E.O. Mann, and O. Paulsen. Priming of hippocampal population bursts by individual perisomatic-targeting interneurons. Journal of Neuroscience, 30(17):5979-5991, 2010.
    • [69] R.M. Empson and U. Heinemann. The perforant path projection to hippocampal area CA1 in the rat hippocampal-entorhinal cortex combined slice. The Journal of Physiology, 484(Pt 3):707-720, 1995.
    • [70] G.B. Ermentrout and N. Kopell. Fine structure of neural spiking and synchronization in the presence of conduction delays. Proceedings of the National Academy of Sciences of the United States of America, 95(3):1259-1264, 1998.
    • [71] L. Faes and G. Nollo. Extended causal modeling to assess Partial Directed Coherence in multiple time series with significant instantaneous interactions. Biological Cybernetics, 103:387-400, 2010.
    • [72] E.E. Fanselow, K. Sameshima, L.A. Baccala, and M.A.L. Nicolelis. Thalamic bursting in rats during different awake behavioral states. Proceedings of the National Academy of Sciences, 98(26):15330-15335, 2001.
    • [73] F. Ferino, A.M. Thierry, and J. Glowinski. Anatomical and electrophysiological evidence for a direct projection from Ammon's horn to the medial prefrontal cortex in the rat. Experimental Brain Research, 65(2):421-426, 1987.
    • [74] D.J. Foster and M.A. Wilson. Reverse replay of behavioural sequences in hippocampal place cells during the awake state. Nature, 440(7084):680-683, 2006.
    • [75] A.S. French and A.V. Holden. Alias-free sampling of neuronal spike trains. Biological Cybernetics, 8(5):165-171, 1971.
    • [76] T.F. Freund and G. Buzsaki. Interneurons of the hippocampus. Hippocampus, 6(4):347-470, 1996.
    • [77] P. Gabbott, A. Headlam, and S. Busby. Morphological evidence that CA1 hippocampal afferents monosynaptically innervate PV-containing neurons and NADPH-diaphorase reactive cells in the medial prefrontal cortex (Areas 25/32) of the rat. Brain Research, 946(2):314-322, 2002.
    • [78] P.W. Gage and B. Robertson. Prolongation of inhibitory postsynaptic currents by pentobarbitone, halothane and ketamine in CA1 pyramidal cells in rat hippocampus. British Journal of Pharmacology, 85(3):675-681, 1985.
    • [79] J.R.P. Geiger, T. Melcher, D.S. Koh, B. Sakmann, P.H. Seeburg, P. Jonas, and H. Monyer. Relative abundance of subunit mRNAs determines gating and Ca2+ permeability of AMPA receptors in principal neurons and interneurons in rat CNS. Neuron, 15(1):193-204, 1995.
    • [80] J. Geweke. Measurement of Linear Dependence and Feedback Between Multiple Time Series. Journal of the American Statistical Association, 77(378):304-13, 1982.
    • [81] J. Geweke, R. Meese, and W. Dent. Comparing Alternative Tests of Causality in Temporal Systems: Analytic Results and Experimental Evidence. Journal of Econometrics, 21(2):161-94, 1983.
    • [82] P.S. Goldman-Rakic. Cellular basis of working memory. Neuron, 14(3):477-485, 1995.
    • [83] P.S. Goldman-Rakic, L.D. Selemon, and M.L. Schwartz. Dual pathways connecting the dorsolateral prefrontal cortex with the hippocampal formation and parahippocampal cortex in the rhesus monkey. Neuroscience, 12(3):719-743, 1984.
    • [84] D. Goodman and R. Brette. Brian: a simulator for spiking neural networks in Python. Frontiers in Neuroinformatics, 2(5):1-10, 2008.
    • [85] B. Gour´evitch, R.L. Bouquin-Jeann`es, and G. Faucon. Linear and nonlinear causality between signals: methods, examples and neurophysiological applications. Biological Cybernetics, 95(4):349-369, 2006.
    • [86] C.W.J. Granger. Investigating causal relations by econometric models and crossspectral methods. Econometrica, 37(3):424-438, 1969.
    • [87] F. Grenier, I. Timofeev, and M. Steriade. Focal synchronization of ripples (80- 200 Hz) in neocortex and their neuronal correlates. Journal of Neurophysiology, 86(4):1884-1898, 2001.
    • [88] A.I. Guly´as, R. Miles, A. Sik, K. T´oth, N. Tamamaki, and T.F. Freund. Hippocampal pyramidal cells excite inhibitory neurons through a single release site. Nature, 366(6456):683-687, 1993.
    • [89] A.I. Guly´as, R. Mlles, N. H´ajos, and T.F. Freund. Precision and variability in postsynaptic target selection of inhibitory cells in the hippocampal CA3 region. European Journal of Neuroscience, 5(12):1729-1751, 1993.
    • [90] T.T.G. Hahn, B. Sakmann, and M.R. Mehta. Phase-locking of hippocampal interneurons' membrane potential to neocortical up-down states. Nature neuroscience, 9(11):1359-1361, 2006.
    • [91] T.T.G. Hahn, B. Sakmann, and M.R. Mehta. Differential responses of hippocampal subfields to cortical up-down states. Proceedings of the National Academy of Sciences, 104(12):5169-5174, 2007.
    • [92] P. Hal´asz, M. Terzano, L. Parrino, and R. B´odizs. The nature of arousal in sleep. Journal of Sleep Research, 13(1):1-23, 2004.
    • [93] D.M. Halliday and J.R. Rosenberg. Time and frequency domain analysis of spike train and time series data. Modern Techniques in Neuroscience Research, pages 503-543, 1999.
    • [94] D.M. Halliday, J.R. Rosenberg, A.M. Amjad, P. Breeze, B.A. Conway, and S.F. Farmer. A framework for the analysis of mixed time series/point process dataTheory and application to the study of physiological tremor, single motor unit discharges and electromyograms. Progress in Biophysics and Molecular Biology, 64(2- 3):237-278, 1995.
    • [95] E.J. Hannan and B.G. Quinn. The determination of the order of an autoregression. Journal of the Royal Statistical Society, 41(2):190-195, 1979.
    • [96] K.D. Harris, H. Hirase, X. Leinekugel, D.A. Henze, and G. Buzs´aki. Temporal interaction between single spikes and complex spike bursts in hippocampal pyramidal cells. Neuron, 32(1):141-149, 2001.
    • [98] W. Hesse, E. M¨oller, M. Arnold, and B. Schack. The use of time-variant EEG Granger causality for inspecting directed interdependencies of neural assemblies. Journal of Neuroscience Methods, 124(1):27-44, 2003.
    • [99] S. Hill and G. Tononi. Modeling sleep and wakefulness in the thalamocortical system. Journal of Neurophysiology, 93(3):1671-1698, 2005.
    • [100] G.M. Hoerzer, S. Liebe, A. Schloegl, N.K. Logothetis, and G. Rainer. Directed Coupling in Local Field Potentials of Macaque V4 During Visual Short-Term Memory Revealed by Multivariate Autoregressive Models. Frontiers in Computational Neuroscience, 4:4, 2010.
    • [101] D. Holcman and M. Tsodyks. The emergence of up and down states in cortical networks. PLoS Comput. Biol, 2(3):174-181, 2006.
    • [102] J. Huang, J.Y. Chang, D.J. Woodward, L.A. Baccal´a, J.S. Han, J.Y. Wang, and F. Luo. Dynamic neuronal responses in cortical and thalamic areas during different phases of formalin test in rats. Experimental Neurology, 200(1):124-134, 2006.
    • [103] K.M. Hurley, H. Herbert, M.M. Moga, and C.B. Saper. Efferent projections of the infralimbic cortex of the rat. The Journal of Comparative Neurology, 308(2):249- 276, 1991.
    • [104] Y. Isomura, A. Sirota, S. O¨ zen, S. Montgomery, K. Mizuseki, D.A. Henze, and G. Buzs´aki. Integration and Segregation of Activity in Entorhinal-Hippocampal Subregions by Neocortical Slow Oscillations. Neuron, 52(5):871-882, 2006.
    • [105] B.H. Jansen. Time series analysis by means of linear modelling. Techniques in the Behavioral and Neural Sciences, 5:157-180, 1991.
    • [106] T. Jarsky, A. Roxin, W.L. Kath, and N. Spruston. Conditional dendritic spike propagation following distal synaptic activation of hippocampal CA1 pyramidal neurons. Nature neuroscience, 8(12):1667-1676, 2005.
    • [107] T.M. Jay, F. Burette, and S. Laroche. NMDA Receptor-dependent Long-term Potentiation in the Hippocampal Afferent Fibre System to the Prefrontal Cortex in the Rat. European Journal of Neuroscience, 7(2):247-250, 1995.
    • [109] T.M. Jay, A.M. Thierry, L. Wiklund, and J. Glowinski. Excitatory amino acid pathway from the hippocampus to the prefrontal cortex. Contribution of AMPA receptors in hippocampo-prefrontal cortex transmission. European journal of neuroscience, 4(12):1285-1295, 1992.
    • [111] D. Ji and M.A. Wilson. Firing rate dynamics in the hippocampus induced by trajectory learning. Journal of Neuroscience, 28(18):4679-4689, 2008.
    • [112] I.T. Jolliffe. Principal component analysis. Springer New York, 2002.
    • [113] P. Jonas, G. Major, and B. Sakmann. Quantal components of unitary EPSCs at the mossy fibre synapse on CA3 pyramidal cells of rat hippocampus. The Journal of Physiology, 472(1):615-663, 1993.
    • [114] M. Kamin´ski, M. Ding, W.A. Truccolo, and S.L. Bressler. Evaluating causal relations in neural systems: Granger causality, directed transfer function and statistical assessment of significance. Biological Cybernetics, 85(2):145-157, 2001.
    • [118] C. King, D.A. Henze, X. Leinekugel, and G. Buzs´aki. Hebbian modification of a hippocampal population pattern in the rat. The Journal of Physiology, 521(1):159- 167, 1999.
    • [119] E.D. Kirson, Y. Yaari, and M. Perouansky. Presynaptic and postsynaptic actions of halothane at glutamatergic synapses in the mouse hippocampus. British Journal of Pharmacology, 124(8):1607-1614, 1998.
    • [120] T. Klausberger, P.J. Magill, L.F. M´arton, J.D.B. Roberts, P.M. Cobden, G. Buzs´aki, and P. Somogyi. Brain-state-and cell-type-specific firing of hippocampal interneurons in vivo. Nature, 421(6925):844-848, 2003.
    • [121] T. Klausberger and P. Somogyi. Neuronal diversity and temporal dynamics: the unity of hippocampal circuit operations. Science, 321(5885):53-57, 2008.
    • [122] W.D. Knowles and P.A. Schwartzkroin. Local circuit synaptic interactions in hippocampal brain slices. Journal of Neuroscience, 1(3):318-322, 1981.
    • [123] A. Korzeniewska, M. Man´czak, M. Kamin´ski, K.J. Blinowska, and S. Kasicki. Determination of information flow direction among brain structures by a modified directed transfer function (dDTF) method. Journal of Neuroscience Methods, 125(1-2):195-207, 2003.
    • [124] M.D. Krasowski and N.L. Harrison. General anaesthetic actions on ligand-gated ion channels. Cellular and Molecular Life Sciences, 55(10):1278-1303, 1999.
    • [125] R. Kus, M. Kaminski, and KJ Blinowska. Determination of EEG activity propagation: pair-wise versus multichannel estimate. Biomedical Engineering, IEEE Transactions on, 51(9):1501-1510, 2004.
    • [126] T. Lanthorn, J. Storm, and P. Andersen. Current-to-frequency transduction in CA1 hippocampal pyramidal cells: slow prepotentials dominate the primary range firing. Experimental brain research, 53(2):431-443, 1984.
    • [127] S. Laroche, T.M. Jay, and A.M. Thierry. Long-term potentiation in the prefrontal cortex following stimulation of the hippocampal CA1/subicular region. Neuroscience Letters, 114(2):184-190, 1990.
    • [128] J.J. Lawrence, Z.M. Grinspan, and C.J. McBain. Quantal transmission at mossy fibre targets in the CA3 region of the rat hippocampus. The Journal of Physiology, 554(1):175-193, 2004.
    • [129] A.K. Lee and M.A. Wilson. Memory of sequential experience in the hippocampus during slow wave sleep. Neuron, 36(6):1183-1194, 2002.
    • [130] X.G. Li, P. Somogyi, A. Ylinen, and G. Buzsaki. The hippocampal CA3 network: an in vivo intracellular labeling study. Journal of Comparative Neurology, 339(2):181-208, 1994.
    • [131] E.W. Lothman, R.C. Collins, and J.A. Ferrendelli. Kainic acid-induced limbic seizures: electrophysiologic studies. Neurology, 31(7):806-812, 1981.
    • [132] H. Lu¨tkepohl. New Introduction to Multiple Time Series Analysis. Springer, 2005.
    • [133] B.A. MacVicar and F.E. Dudek. Local synaptic circuits in rat hippocampus: interactions between pyramidal cells. Brain Research, 184(1):220-223, 1980.
    • [134] D.V. Madison and R.A. Nicoll. Control of the repetitive discharge of rat CA1 pyramidal neurones in vitro. The Journal of Physiology, 354(1):319-331, 1984.
    • [135] N. Maier, M. Guldenagel, G. Sohl, H. Siegmund, K. Willecke, and A. Draguhn. Reduction of high-frequency network oscillations (ripples) and pathological network discharges in hippocampal slices from connexin 36-deficient mice. The Journal of Physiology, 541(2):521-528, 2002.
    • [136] N. Maier, V. Nimmrich, and A. Draguhn. Cellular and network mechanisms underlying spontaneous sharp wave-ripple complexes in mouse hippocampal slices. The Journal of Physiology, 550(3):873-887, 2003.
    • [137] F. Maingret, S.E. Lauri, T. Taira, and J.T.R. Isaac. Profound regulation of neonatal CA1 rat hippocampal GABAergic transmission by functionally distinct kainate receptor populations. The Journal of Physiology, 567(1):131-142, 2005.
    • [138] S.L. Marple. Digital spectral analysis. Prentice-Hall Englewood Cliffs, NJ, 1987.
    • [139] M. Massimini, R. Huber, F. Ferrarelli, S. Hill, and G. Tononi. The sleep slow oscillation as a traveling wave. Journal of Neuroscience, 24(31):6862-6870, 2004.
    • [140] M.R. Mehta. Cortico-hippocampal interaction during up-down states and memory consolidation. Journal of Neuroscience, 10(1):13-15, 2007.
    • [141] O. Melamed, O. Barak, G. Silberberg, H. Markram, and M. Tsodyks. Slow oscillations in neural networks with facilitating synapses. Journal of Computational Neuroscience, 25(2):308-316, 2008.
    • [153] V. Nimmrich, N. Maier, D. Schmitz, and A. Draguhn. Induced sharp wave-ripple complexes in the absence of synaptic inhibition in mouse hippocampal slices. The Journal of Physiology, 563(3):663-670, 2005.
    • [164] A. Peyrache, M. Khamassi, K. Benchenane, S.I. Wiener, and F.P. Battaglia. Replay of rule-learning related neural patterns in the prefrontal cortex during sleep. Nature Neuroscience, 12(7):919-926, 2009.
    • [166] J.G. Proakis, C.M. Rader, F. Ling, and C.L. Nikias. Advanced digital signal processing, volume 46. Macmillan New York, 1992.
    • [167] M. Remondes and E.M. Schuman. Direct cortical input modulates plasticity and spiking in CA1 pyramidal neurons. Nature, 416(6882):736-740, 2002.
    • [195] M. Steriade, A. Nunez, and F. Amzica. A novel slow (< 1 Hz) oscillation of neocortical neurons in vivo: depolarizing and hyperpolarizing components. Journal of Neuroscience, 13(8):3252-3265, 1993.
    • [205] I. Timofeev, F. Grenier, M. Bazhenov, T.J. Sejnowski, and M. Steriade. Origin of slow cortical oscillations in deafferented cortical slabs. Cerebral Cortex, 10(12):1185-1199, 2000.
    • [216] R.D. Traub, R. Miles, and R.K. Wong. Model of the origin of rhythmic population oscillations in the hippocampal slice. Science, 243(4896):1319-1325, 1989.
    • [226] J.Y. Wang, J.Y. Chang, D.J. Woodward, L.A. Baccala, J.S. Han, and F. Luo. Corticofugal influences on thalamic neurons during nociceptive transmission in awake rats. Synapse, 61(5):335-42, 2007.
    • [236] M. Winterhalder, B. Schelter, W. Hesse, K. Schwab, L. Leistritz, D. Klan, R. Bauer, J. Timmer, and H. Witte. Comparison of linear signal processing techniques to infer directed interactions in multivariate neural systems. Signal Processing, 85(11):2137-2160, 2005.
    • [237] T. Wolansky, E.A. Clement, S.R. Peters, M.A. Palczak, and C.T. Dickson. Hippocampal slow oscillation: a novel EEG state and its coordination with ongoing neocortical activity. Journal of Neuroscience, 26(23):6213-6229, 2006.
    • [238] C. Wu, M.N. Asl, J. Gillis, F.K. Skinner, and L. Zhang. An in vitro model of hippocampal sharp waves: regional initiation and intracellular correlates. Journal of Neurophysiology, 94(1):741-753, 2005.
    • [239] C. Yamamoto, M. Higashima, and S. Sawada. Quantal analysis of potentiating action of phorbol ester on synaptic transmission in the hippocampus. Neuroscience Research, 5(1):28-38, 1987.
    • [240] H. Yang, J.Y. Chang, D.J. Woodward, L.A. Baccal´a, J.S. Han, and F. Luo. Coding of peripheral electrical stimulation frequency in thalamocortical pathways. Experimental Neurology, 196(1):138-152, 2005.
    • [241] A. Ylinen, A. Bragin, Z. Nadasdy, G. Jando, I. Szabo, A. Sik, and G. Buzsaki. Sharp wave-associated high-frequency oscillation (200 Hz) in the intact hippocampus: network and intracellular mechanisms. Journal of Neuroscience, 15(1):30-46, 1995.
  • Inferred research data

    The results below are discovered through our pilot algorithms. Let us know how we are doing!

    Title Trust
    56
    56%
  • No similar publications.

Share - Bookmark

Cite this article