Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Marchán, Daniel F.; Refoyo, Pablo; Fernández, Rosa; Novo Rodriguez, Marta; de Sosa, Irene; Díaz Cosín, Darío J. (2016)
Publisher: Elsevier
Languages: English
Types: Article
Subjects: Biología, Invertebrados, Edafología
Ecological Niche Modeling (ENM) through MaxEnt and quantitative comparison techniques using ENMtools could facilitate ecological inferences in problematic soil dwelling taxa. Despite its ecological relevance in the Western Mediterranean basin, the ecology of the endemic family Hormogastridae (Annelida, Oligochaeta) is poorly known. Applying this comparative approach to the main clades of Hormogastridae would allow a better understanding of their ecological preferences and differences. One hundred twenty-four occurrence data belonging to four clades within this earthworm family were used as input to infer separate MaxEnt models, including seven predictor variables. Niche breadth, niche overlap and identity tests were calculated in ENMtools; a spatial Principal Components Analysis (sPCA) was performed to contrast with the realized niches. The highly suitable predicted ranges varied in their ability to reflect the known distribution of the clades. The different analyses pointed towards different ecological preferences and significant ecological divergence in the four above-mentioned clades. These results are an example of wide-scale ecological inferences for soil fauna made possible by this promising methodology, and show how ecological characterization of relevant taxonomic units could be a useful support for systematic revisions.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • [1] T. Decaëns, Macroecological patterns in soil communities. Global Ecology and Biogeography, 19(3) (2010) 287-302.
    • [2] J. Smith, S. Potts, P. Eggleton, Evaluating the efficiency of sampling methods in assessing soil macrofauna communities in arable systems. Eur. J. Soil Biol. 44 (3) (2008) 271-276.
    • [3] S.J. Phillips, R.P. Anderson, R.E. Schapire, Maximum entropy modeling of species geographic distributions. Ecol. Model. 190 (2006) 231-259.
    • [4] P.H. Crawford, B.W. Hoagland, Using species distribution models to guide [13] J.A.F. Diniz, P. De Marco, B.A. Hawkins, Defying the curse of ignorance: perspectives in insect macroecology and conservation biogeography. Insect Conserv.Diver. 3 (2010) 172-179.
    • [15] D.J. Díaz Cosín, R.P. Moro, J.V. Valle, M.H. Garvín, D. Trigo, J.B. Jesús, Producción de heces de Hormogaster elisae en diferentes tipos de cultivos en laboratorio. Bol. R. Soc. Esp. Hist. Nat. (Sec. Biol.), 92 (1996) 177-184.
    • [17] P. Hernández, Estudio de la distribución horizontal de Hormogaster elisae (Oligochaeta, Hormogastridae) en el Molar y de los factores que le regulan, Doctoral dissertation, Universidad Complutense de Madrid, 2005.
    • [18] D.J. Díaz Cosín, M.P. Ruiz, M. Ramajo, M. Gutiérrez, Is the aestivation of the earthworm Hormogaster elisae a paradiapause? Invertebr. Biol. 125(3) (2006) 250- 255. doi:10.1111/j.1744-7410.2006.00057.x
    • [19] K.L. Lee, Earthworms. Their Ecology and Relationships with Soils and Land use. 411 pages. Academic Press, Sidney, 1985.
    • [20] M. Novo, A. Almodóvar, R. Fernández, D. Trigo, D.J. Díaz Cosín, G. Giribet, Appearances can be deceptive: Different diversification patterns within a group of
    • [22] M. Novo, R. Fernández, S.C.S. Andrade, D.F. Marchán, L. Cunha, D.J. Díaz Cosín, Phylogenomic analyses of a Mediterranean earthworm family (Annelida: Hormogastridae). Mol. Phylogenet. Evol. 94B (2016), 473-478.
    • [23] D.F. Marchán, R. Fernández, M. Novo, D.J. Díaz Cosín, New light into the hormogastrid riddle: morphological and molecular description of Hormogaster joseantonioi sp. n. (Annelida, Clitellata, Hormogastridae). ZooKeys, 414 (2014) 1-17. doi:10.3897/zookeys.414.7665
    • [24] M. Novo, A. Almodóvar, D.J. Díaz Cosín, High genetic divergence of hormogastrid earthworms (Annelida, Oligochaeta) in the central Iberian Peninsula: evolutionary and demographic implications. Zool. Scr. 38(5) (2009) 537-552.
    • [25] M. Novo, R. Fernández, D.F. Marchán, D. Trigo, D.J. Díaz Cosín, G. Giribet, Unearthing the historical biogeography of Mediterranean earthworms (Annelida : Hormogastridae). J. Biogeogr. 42 (2015) 751-762
    • [26] A.M.L. Lindahl, I.G. Dubus, N.J. Jarvis, Site Classification to Predict the Abundance of the Deep-Burrowing Earthworm L. Vadose Zone J. 8(4) (2009) 911-915.
    • [27] M.G. Paoletti, The role of earthworms for assessment of sustainability and as bioindicators. Agriculture, Ecosystems & Environment, 74(1) (1999) 137-155.
    • [28] E.W. Sanderson, M. Jaiteh, M.A. Levy, K.H. Redford, A.V. Wannebo, G. Woolmer, The Human Footprint and the Last of the Wild: the human footprint is a global map of human influence on the land surface, which suggests that human beings are stewards of nature, whether we like it or not. BioScience, 52(10) (2002) 891-904.
    • [29] J.L. Tellería, T. Santos, P. Refoyo, J. Muñoz, Use of ring recoveries to predict habitat suitability in small passerines. Distrib. Divers. 18 (11) (2012) 1130-1138.
    • [30] A. Lehmann, J.M. Overton, J.R. Leathwick, GRASP: generalized regression analysis and spatial prediction. Ecol. Model. 157 (2002) 189-207.
    • [31] A.H. Fielding, J.F. Bell, A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ. Conserv. 24 (1997) 38-49.
    • [32] R. Engler, A. Guisan, L. Rechsteiner, An improved approach for predicting the distribution of rare and endangered species from occurrence and pseudo-absence data. J. Appl. Ecol. 41 (2004) 263 - 274
    • [33] J. Elith, C.H. Graham, R.P. Anderson, M. Dudík, S. Ferrier, A. Guisan, R. Hijmans, F. Huettmann, J.R. Leathwick, A. Lehmann, L. Jin, L. Lohmann,B.A. Loiselle, G. Manion, C. Moritz, M. Nakamura, Y. Nakazawa, J. McC. Overton, A.T. Peterson, S.J. Phillips, Novel methods improve prediction of species distributions from occurrence data. Ecography 29 (2006) 129-151.
    • [34] J. Elith, S.J. Phillips, T. Hastie, M. Dudík, Y.E. Chee, C.J. Yates, A statistical explanation of MaxEnt for ecologists. Divers. Distrib. 17 (2010) 43-57.
    • [35] D.L. Warren, R.E. Glor, M. Turelli, Environmental niche equivalency versus conservatism: Quantitative approaches to niche evolution. Evolution 62(11) (2008) 2868-2883. doi:10.1111/j.1558-5646.2008.00482.x
    • [36] T. Nakazato, D.L. Warren, L.C. Moyle, Ecological and geographic modes of species divergence in wild tomatoes. Am. J. Bot. 97(4) (2010) 680-693. doi:10.3732/ajb.0900216
    • [37] T.W. Schoener, The Anolis lizards of Bimini: resource partitioning in a complex fauna. Ecology 49 (1968) 704-726.
    • [38] R. Levin, Evolution in changing environments: Some theoretical explorations. Princeton University Press 1968.
    • [39] J.A. Swets, Measuring the accuracy of diagnostic systems. Science 240 (1988) 1285-1293
    • [40] M. Ramajo, Relaciones interespecíficas de lombrices de tierra en una parcela de El Molar (Madrid). Doctoral dissertation, Universidad Complutense de Madrid, 2009.
    • [41] P. López Echezarreta, Cambios en las sinusias de lumbrícidos (Oligochaeta, Lumbricidae) en las plantaciones de coníferas exóticas en el País Vasco (Guipúzcoa). Munibe, 2 (1980) 695-766.
    • [42] E. Ramos, L. Cabrera, H.W. Hagemann, W. Pickel, I. Zamarreño, Palaeogene lacustrine record in Mallorca (NW Mediterranean, Spain): Depositional, palaeogeographic and palaeoclimatic implications for the ancient southeastern Iberian margin. Palaeogeogr. Palaeocl. 172 (2001) 1-37. doi:10.1016/S0031-0182(01)00277-2
    • [43] M.M. Bauzà-Ribot, D. Jaume, J.J Fornós, C. Juan, J. Pons, Islands beneath islands: phylogeography of a groundwater amphipod crustacean in the Balearic archipelago. BMC Evol. Biol. 11(1) (2011) 221. doi:10.1186/1471-2148-11-221
    • [44] M. Pérez-Losada, J.W. Breinholt, P.G. Porto, M. Aira, J. Domínguez, An earthworm riddle: Systematics and phylogeography of the Spanish lumbricid postandrilus. PLoS ONE, 6(11) (2011) doi:10.1371/journal.pone.0028153
    • [45] M. Novo, A. Almodóvar, R. Fernández, M. Gutiérrez, D.J. Díaz Cosín, Mate choice of an endogeic earthworm revealed by microsatellite markers. Pedobiologia, 53(6) (2010) 375-379.
  • Discovered through pilot similarity algorithms. Send us your feedback.

Share - Bookmark

Funded by projects


Cite this article