Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Rosam, J.; Jimack, P.K.; Mullis, A. (2007)
Publisher: Elsevier
Languages: English
Types: Article
A fully-implicit numerical method based upon adaptively refined meshes for the\ud simulation of binary alloy solidification in 2D is presented. In addition we combine a\ud second-order fully-implicit time discretisation scheme with variable steps size control\ud to obtain an adaptive time and space discretisation method. The superiority of this\ud method, compared to widely used fully-explicit methods, with respect to CPU time\ud and accuracy, is shown. Due to the high non-linearity of the governing equations\ud a robust and fast solver for systems of nonlinear algebraic equations is needed to\ud solve the intermediate approximations per time step. We use a nonlinear multigrid\ud solver which shows almost h-independent convergence behaviour.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • [1] R. Kobayashi, Modeling and numerical simulations of dendritic crystal growth, Physica D 63 (1993) 410-423
    • [2] W.J. Boettinger, J.A. Warren, C. Beckermann, and A. Karma, Phase-Field Simulation of Solidification, Annu. Rev. Mater. Res 32 (2002) 163-194, doi: 10.1146/annurev.matsci.32.101901.155803.
    • [3] J.C. Ramirez, C. Beckermann, A. Karma, and H.-J. Diepers, Phase-field modeling of binary alloy solidification with coupled thermal heat and solute diffusion, Physical Review E 69 (2004), doi: 10.1103/PhysRevE.69.051607.
    • [4] A.M. Mullis, An extension to the Wheeler phase-field model to allow decoupling of the capillary and kinetic anisotropies, Eur. Phys. Journal B 41 (2004) 377- 382, doi: 10.1140/epjb/e2004-00330-7.
    • [5] A.M. Mullis, Quantification of mesh induced anisotropy effects in the phase-field method, Computational Materials Science 36 (2006) 345-353, doi:10.1016/j.commatsci.2005.02.017
    • [6] A.A. Wheeler, W.J. Boettinger, and G.B. McFadden, Phase-field model for isothermal phase transitions in binary alloys, Physical Review A 45 (1992) 7424- 7440
    • [7] S.G. Kim, W.T. Kim, and T. Suzuki, Phase-field model for binary alloys, Physical Review E 60 (1999) 7186-7197
    • [8] A. Karma, PhaseField Formulation for Quantitative Modeling of Alloy Solidification, Physical Review Letters 87 (2001), doi: 10.1103/PhysRevLett.87.115701.
    • [9] A. Schmidt, Computation of Three Dimensional Dendrites with Finite Elements, Journal of Computational Physics 125 (1996)
    • [10] R.J. Braun, and B.T. Murray, Adaptive phase-field computations of dendritic crystal growth, Journal of Crystal Growth 174 (1997) 41-53
    • [11] N. Provatas, N. Goldenfeld, J. Dantzig, Adaptive Mesh Refinement Computation of Solidification Microstructures Using Dynamic Data Structures, Journal of Computational Physics 148 (1999) 265-290
    • [12] B. Nestler, D. Danilov, and P. Galenko, Crystal growth of pure substances: Phase-field simulations in comparison with analytical and experimental results, Journal of Computational Physics 207 (2005) 221-239, doi: 10.1016/j.jcp.2005.01.018.
    • [13] A.C. Jones, A Projected Multigrid Method for the Solution of Nonlinear Finite Element Problems on Adaptively Refined Grids, Ph.D. thesis, School of Computing, University of Leeds, 2005
    • [14] W.L. George, and J.A. Warren, A Parallel 3D Dendritic Growth Simulator Using the Phase-Field Method, Journal of Computational Physics 177 (2002) 264-283, doi: 10.1006/jcph.2002.7005.
    • [15] C.W. Lan, Y.C. Chang, and C.J. Shih, Adaptive phase field simulation of nonisothermal free dendritic growth of a binary alloy, Acta Materialia 51 (2003) 1857-1869, doi: 10.1016/S1359-6454(02)00582-7
    • [16] P. Zhao, M. V´enere, J.C. Heinrich, and D.R. Poirier, Modeling dendritic growth of a binary alloy, Journal of Computational Physics 188 (2003) 434-461, doi: 10.1016/S0021-9991(03)00185-2.
    • [17] W. Hundsdorfer, J.G. Verwer, Numerical Solution of Time-Dependent Advection-Diffusion-Reaction Equations, Springer Verlag, 2003
    • [18] A. Karma, W.J. Rappel, Phase-field method for computationally efficient modeling of solidification with arbitrary interface kinetics, Physical Review E 53 (1996)
    • [19] A. Karma, W.J. Rappel ,Quantitative phase-field modelling of dendritic growth in two and three dimensions, Physical Review E 57 (4) (1998)
    • [20] B. Echebarria, R. Folch, A. Karma, M. Plapp, Quantitative phase-field model of alloy solidification, Physical Review E 70 (2004)
    • [21] U. Trottenberg, C. Oosterlee, A. Schu¨ller Multigrid, Academic Press, 2001
    • [22] W. Hackbusch, Multi-Grid Methods and Applications, Springer Series in Computational Mathematics (Springer-Verlag, Berlin/Heidelberg, 1985)
    • [23] W.L. Briggs, V.E. Henson, and S.F. McCormick, A Multigrid Tutorial, SIAM, Philadelphia, 2nd edition, 2000
    • [24] A. Brandt, Multi-Level Adaptive Solutions to Boundary-Value Problems, Mathematics of Computation 31 (1977) 333-390
    • [25] S.McCormick, and J. Thomas, The Fast Adaptive Composite Grid (FAC) Method for Elliptic Equations, Mathematics of Computation 46 (1986) 439- 456
    • [26] J. Lang, Adaptive Mulitlevel Solution of Nonlinear Parabolic PDE systems: Theory, Algorithm and Application, Springer, 2001
    • [27] W. Hackbusch, Theorie und Numerik elliptischer Differentialgleichungen, Teubner Studienbu¨cher, Teubner, Stuttgart, 2003
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article