Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Aziz, Furqan; Hancock, Edwin R.; Wilson, Richard C. (2016)
Publisher: Springer International Publishing
Languages: English
Types: Other
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 1. Dehmer, M.: Information processing in complex networks: Graph entropy and information functionals, Applied Math. and Comp., Vol 201, 2008, Pages 82-94.
    • 2. Estrada, E.: Characterization of 3D molecular structure. Chemical Physics Letters, Volume 319, Issues 5-6, 24 March 2000, Pages 713-718.
    • 3. Ko¨rner, J.: Coding of an information source having ambiguous alphabet and the entropy of graphs. 6th Prague conference on information theory. 1973.
    • 4. Kolmogorov, A.N.: Three approaches to the definition of the concept ?quantity of information? Probl. Peredachi Inf., 1965, Volume1, Issue1, Pages3?11
    • 5. Chaitin, G. J. : On the Length of Programs for Computing Finite Binary Sequences Journal of the ACM, Volume 13 Issue 4, Oct. 1966.
    • 6. Scott, G., Storm, C.: The coefficients of the Ihara zeta function, Involve - a journal of mathematics. Vol. 1 (2008), No. 2, 217?233.
    • 7. Aziz, F., Wilson, R. C., Hancock, E. R.: Backtrackless Walks on a Graph. IEEE Trans. on Neural Netw. and Learning Systems, Volume 24, Issue 6, Pages 977-989.
    • 8. Ren, P., Wilson, R.C., Hancock, E.R.: Graph Characterization via Ihara Coefficients. IEEE Transactions on Neural Networks, vol 22(2), 233 - 245, 29 November 2010.
    • 9. Escolano, F., Hancock, E. R., Lozano, M.A.: Heat diffusion: Thermodynamic depth complexity of networks. Phys. Rev. E, vol 85(3), Mar 2012.
    • 10. Erd˜os, P., R´enyi A.: On the evolution of random graphs. Publications of the Mathematical Institute of the Hungarian Academy of Sciences, 17-61 (1960).
    • 11. Watts, D. J., Strogatz, S. H.: Collective dynamics of 'small-world' networks. Nature, 440-442 (1998).
    • 12. Barab´asi A., and Albert R.: Emergence of Scaling in Random Networks. Science 509-512 (1999).
    • 13. Bass, H.: The Ihara-Selberg zeta function of a tree lattice. Int. J. Math., 1992, 717-797.
    • 14. Kotani, M., Sunada, T.: Zeta function of finite graphs. Journal of Mathematics, University of Tokyo 7(1), 2000, pages 7-25.
    • 15. Delaunay, B.: Sur la sphre vide, Izvestia Akademii Nauk SSSR, Otdelenie Matematicheskikh i Estestvennykh Nauk, 1934, 793800.
    • 16. Toussaint, G.T.: The relative neighbourhood graph of a finite planar set, Pattern Recognition, 1980, 261 - 268.
    • 17. Jolliffe, I. T.: Principal Component Analysis, Springer-Verlag, New York, 1986.
    • 18. Gabriel, K. R., Sokal R. R.: A New Statistical Approach to Geographic Variation Analysis, Systematic Zoology, 1969, 205-222.
    • 19. Harris, C., Stephens, M.: A combined corner and edge detector, In Fourth Alvey Vision Conference, Manchester, UK, 1988, 147-151.
    • 20. Nayar, S.K., Nene, S.A., Murase, H.: Columbia object image library (coil 100), Department of Comp. Science, Columbia University, Tech. Rep. CUCS-006-96,1996.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article