LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Reyers, Mark; Krüger, Andreas; Werner, Christiane; Pinto, Joaquim G.; Zacharias, Stefan; Kerschgens, Michael (2011)
Publisher: Springer Nature
Journal: Boundary-Layer Meteorology
Languages: English
Types: Article
Subjects: Atmospheric Science
A mesoscale meteorological model (FOOT3DK) is coupled with a gas exchange model to simulate surface fluxes of CO2 and H2O under field conditions. The gas exchange model consists of a C3 single leaf photosynthesis sub-model and an extended big leaf (sun/shade) sub-model that divides the canopy into sunlit and shaded fractions. Simulated CO2 fluxes of the stand-alone version of the gas exchange model correspond well to eddy-covariance measurements at a test site in a rural area in the west of Germany. The coupled FOOT3DK/gas exchange model is validated for the diurnal cycle at singular grid points, and delivers realistic fluxes with respect to their order of magnitude and to the general daily course. Compared to the Jarvis-based big leaf scheme, simulations of latent heat fluxes with a photosynthesis-based scheme for stomatal conductance are more realistic. As expected, flux averages are strongly influenced by the underlying land cover. While the simulated net ecosystem exchange is highly correlated with leaf area index, this correlation is much weaker for the latent heat flux. Photosynthetic CO2 uptake is associated with transpirational water loss via the stomata, and the resulting opposing surface fluxes of CO2 and H2O are reproduced with the model approach. Over vegetated surfaces it is shown that the coupling of a photosynthesis-based gas exchange model with the land-surface scheme of a mesoscale model results in more realistic simulated latent heat fluxes.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Adegoke JO, Pielke R, Carleton AM (2007) Observational and modelling studies of the impacts of agricultural-related land use change on planetary boundary layer processes in the central US. Agric For Meteorol 142:203-215
    • Atkin OK, Bruhn D, Hurry VM, Tjoelker MG (2005) The hot and the cold: unravelling the variable response of plant respiration to temperature. Funct Plant Biol 32:87-105
    • Baldauf M, Förstner C, Klink S, Reinhardt T, Schraff C, Seiffert A, Stephan K (2009) Kurze Beschreibung des Lokal-Modells Kürzesfrist COSMO-DE (LMK) und seiner Datenbank auf dem Datenserver des DWD. Deutscher Wetterdienst, Geschäftsbereich Forschung und Entwicklung, Offenbach, Germany, 72 pp
    • Ball JT, Woodrow IE, Berry JA (1987) A model predicting stomatal conductance and its contribution to the control of photosynthesis under different environmental conditions. In Biggens J (ed) Progress in photosynthesis research IV. Martinus Nijhoff, Dordrecht, pp 221-224
    • Beyrich F, Mengelkamp HT (2006) Evaproation over heterogeneous land surface: EVA_GRIPS and the LITFASS-2003 experiment-an overview. Boundary-Layer Meteorol 121:5-32
    • Beyschlag W, Ryel RJ (1999) Canopy modelling. In: Pugnaire F, Valladares F (eds) Handbook of plant functional ecology. Marcel Dekker, New York, pp 771-804
    • Bonan GB (1995) Land-atmosphere CO2 exchange simulated by a land surface process model coupled to an atmospheric general circulation model. J Geophys Res 100:2817-2831
    • Brücher W (1997) Numerische Studien zum Mehrfachnesting mit einem nicht-hydrostatischen modell. Dissertation, University of Cologne
    • Brücher W, Kerschgens M, Steffany F (1994a) On the generation of synthetic wind roses in orographocally structured terrain. Theor Appl Climatol 48:203-207
    • Brücher W, Kerschgens M, Steffany F (1994b) Synthetik wind climatologies. Meteorol Z 3:183-186
    • Brücher W, Kessler C, Kerschgens M, Ebel A (2001) Simulation of traffic-induced air pollution on regional to local scales. Atmos Environ 34(27):4675-4681
    • Bunnell FL, Tait DEN, Flanagan PW, Van Cleve K (1977) Microbial respiration and substrate weight loss, I, A general model of the influences of abiotic variables. Soil Biol Biochem 9:33-40
    • Collatz GJ, Ball JT, Griver C, Berry JA (1991) Physiological and environmental regulation of stomatal conductance, photosynthesis and transpiration: a model that includes a laminar boundary layer. Agric For Meteorol 54:107-136
    • Dai Y et al (2003) The common land model. Bull Am Meteorol Soc 84:1013-1023
    • de Arellano JVG, Gioli B, Miglietta F, Jonker HJJ, Baltink HK, Hutjes RWA, Holtslag AAM (2004) The entrainment process of carbon dioxide in the atmospheric boundary layer. J Geophys Res 109:110-124
    • de Pury DGG, Farquhar GD (1997) Simple scaling of photosynthesis from leaves to canopies without the errors of big-leaf models. Plant Cell Environ 20:537-557
    • Farquhar GD, von Caemmerer S, Berry JA (1980) A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149:78-90
    • Fesquet C, Drobinski P, Barthlott C, Dubos T (2009) Impact of terrain heterogeneity on near-surface turbulence structure. Atmos Res 94:254-269
    • Garcia-Amorena I, Wagner F, van Hoof TB, Gomez Manzaneque FG (2006) Stomatal responses in deciduous oaks from southern Europe to the anthropogenic atmospheric CO2 increase; refining the stomatal-based CO2 proxy. Rev Palaeobot Palynol 141:303-312
    • Górska M, Vilà-Gueraude Arellano J, LeMone MA, van Heerwarden CC (2008) mean and flux horizontal variability of virtual potential temperature, moisture, and carbon dioxide: aircraft observations and LES study. Mon Weather Rev 136:4435-4451
    • Graf A, Prolingheuer N, Schickling A, Schmidt M, Schneider K, Schüttemeyer D, Herbst M, Huisman JA, Weihermüller L, Scharnagl B, Steenpass C, Harms R, Vereecken H (2010a) Temporal downscaling of soil CO2 efflux measurements based on time-stable spatial patterns. Vadose Zone J. doi:10.2136/vzj2009. 0152
    • Graf A, Schüttemeyer D, Geiß H, Knaps A, Möllmann-Coers M, Schween JH, Kollet S, Neininger B, Herbst M, Vereecken H (2010b) Boundedness of turbulent temperature probability distributions, and their relation to the vertical profile in the convective boundary layer. Boundary-Layer Meteorol 134:459-486
    • Harley PC, Thomas RB, Reynolds JF, Strain BR (1992) Modelling photosynthesis of cotton grown in elevated CO2. Plant Cell Environ 15:271-282
    • Heinemann G, Kerschgens M (2005) Comparison of methods for area-averaging surface energy fluxes over heterogenous land surfaces using high-resolution non-hydrostatic simulations. Int J Climatol 25:379-403. doi:10.1002/joc.1123
    • Houborg RM, Soegaard H (2004) Regional simulation of ecosystem CO2 and water vapor exchange for agricultural land using NOAA AVHRR and Terra MODIS satellite data. Application to Zealand, Denmark. Remote Sens Environ 93:150-167
    • Hübener H, Schmidt M, Sogalla M, Kerschgens M (2005) Simulating evapotranspiration in a semi-arid environment. Theor Appl Climatol 80:153-167
    • Jacobsen I, Heise E (1982) A new economic method for the computation of the surface temperature in numerical models. Beitr Phys Atmos 55:28-41
    • Jarvis P (1976) The interpretation of leaf water potential and stomatal conductance found in canopies in the field. Philos Trans R Soc Lond Ser B Biol Sci 273:593-610
    • Konrad W, Roth-Nebelsick A, Grein M (2008) Modelling of stomatal density response to atmospheric CO2. J Theor Biol 253:638-658
    • Kothavala Z, Arain MA, Black TA, Verseghy D (2005) The simulation of energy, water vapor and carbon dioxide fluxes over common crops by the Canadian Land Surface Scheme (CLASS). Agric For Meteorol 133:89-108
    • Kvifte G, Hegg K, Hansen V (1983) Spectral distribution of solar radiation in the Nordic countries. J Clim Appl Meteorol 22:143-152
    • LeMone MA, Chen F, Alfieri JG, Tewari M, Geerts B, Miao Q, Grossman RL, Coulter RL (2007) Influence of land cover and soil moisture on the horizontal distribution of sensible and latent heat fluxes in southeast Kansas during IHOP_2002 and CASES-97. J Hydrometeorol 8:68-87
    • Maurer B, Heinemann G (2006) Validation of the “Lokal-Modell” over heterogeneous land surfaces using aircraft-based measurements of the REEEFA experiment and comparison with micro-scale simulations. Meteorol Atmos Phys 91:107-128
    • Mengelkamp HT, Beyrich F, Heinemann G, Ament F, Bange J, Berger F, Bösenberg J, Foken T, Hennemuth B, Heret C, Huneke S, Johnsen KP, Kerschgens M, Kohsiek W, Leps JP, Liebethal C, Lohse H, Maider M, Meijninger W, Raasch S, Simmer C, Spiess T, Titterbrand A, Uhlenbrock J, Zittel P (2006) Evaporation over a heterogeneous land surface-the EVA-GRIPS Project. Bull Am Meteorol Soc 87:775-786
    • Niyogi D, Alapaty K, Raman S, Chen F (2009) Development and evaluation of a coupled photosynthesis -based gas exchange evapotranspiration model (GEM) for mesoscale weather forecasting applications. J Appl Meteorol Climatol 48:349-368
    • Noilhan J, Planton S (1989) A simple parameterization of land surface processes for meteorological models. Mon Weather Rev 117:536-549
    • Norby RJ, Luo Y (2004) Evaluating ecosystem responses to rising atmospheric CO2 and global warming in a multi-factor world. New Phytol 162:281-293
    • Pielke RA, Avissar R (1990) Influence of landscape structure on local and regional climate. Landsc Ecol 4:133-155
    • Pielke RA, Niyogi D (2009) The role of landscape processes within the climate system. In: Otto JC, Dikaum R (eds) Landform-structure, evolution, process control: proceedings of the international symposium on Landforms organised by the research training group 437, vol 115. Springer, Berlin, 67 pp
    • Pinto JG, Neuhaus CP, Krüger A, Kerschgens M (2009) Assessment of the wind gust estimates method in mesoscale modelling of storm events over West Germany. Meteorol Z 18:495-506
    • Ryel RJ, Beyschlag W, Caldwell MM (1993) Foliage orientation and carbon gain in two tussock grasses as assessed with a new whole-plant gas-exchange model. Funct Ecol 7:115-124
    • Sellers PJ, Berry JA, Collatz GJ, Field CB, Hall FG (1992) Canopy reflectance, photosynthesis, and transpiration. III. A reanalysis using improved leaf models and a new canopy integration scheme. Remote Sens Environ 42:187-216
    • Sellers PJ et al. (1996) A revised land surface parameterisation (SiB2) for atmospheric GCMs. Part I: model formulation. J Clim 9:676-705
    • Shao Y, Sogalla M, Kerschgens M, Brücher W (2001) Effects of land-surface heterogeneity upon surface fluxes and turbulent conditions. Meteorol Atmos Phys 78:157-181
    • Sogalla M, Krüger A, Kerschgens M (2006) Mesoscale modelling of interactions between rainfall and the land surface in West Africa. Meteorol Atmos Phys 91:211-221
    • Szeicz G (1974) Solar radiation for plant growth. J Appl Ecol 11:617-636
    • Tricker PJ, Trewin H, Kull O, Clarkson GJJ, Eensalu E, Tallis MJ, Colella A, Doncaster CP, Sabatti M, Taylor G (2005) Stomatal conductance and not stomatal density determines the long-term reduction in leaf transpiration of poplar in elevated CO2. Oecologia 143:652-660
    • Waldhoff G (2010) Land use classification of 2009 for the Rur catchment. doi:10.1594/GFZ.TR32.1
    • Werner C, Correia O, Ryel RJ, Beyschlag W (2001) Effects of photoinhibition on whole-plant carbon gain assessed with a photosynthesis model. Plant Cell Environ 24:27-40
    • Xiu A, Pleim JE (2001) Development of a land surface model, part I: application in a mesoscale meteorological model. J Appl Meteorol 40:192-209
    • Zhan X, Kustas WP (2001) A coupled model of land surface CO2 and energy fluxes using remote sensing data. Agric For Meteorol 107:131-152
  • Inferred research data

    The results below are discovered through our pilot algorithms. Let us know how we are doing!

    Title Trust
    73
    73%
  • No similar publications.

Share - Bookmark

Cite this article