Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
McLandress, Charles; Scinocca, John F.; Shepherd, Theodore G.; Reader, M. Catherine; Manney, Gloria L. (2013)
Publisher: American Meteorological Society
Languages: English
Types: Article
A version of the Canadian Middle Atmosphere Model (CMAM) that is nudged toward reanalysis data up to 1 hPa is used to examine the impacts of parameterized orographic and non-orographic gravity wave drag (OGWD and NGWD) on the zonal-mean circulation of the mesosphere during the extended northern winters of 2006 and 2009 when there were two large stratospheric sudden warmings. The simulations are compared to Aura Microwave Limb Sounder (MLS) observations of mesospheric temperature, carbon monoxide (CO) and derived zonal winds. The control simulation, which uses both OGWD and NGWD, is shown to be in good agreement with MLS. The impacts of OGWD and NGWD are assessed using simulations in which those sources of wave drag are removed. In the absence of OGWD the mesospheric zonal winds in the months preceding the warmings are too strong, causing increased mesospheric NGWD, which drives excessive downwelling, resulting in overly large lower mesospheric values of CO prior to the warming. NGWD is found to be most important following the warmings when the underlying westerlies are too weak to allow much vertical propagation of the orographic gravity waves to the mesosphere. NGWD is primarily responsible for driving the circulation that results in the descent of CO from the thermosphere following the warmings. Zonal mean mesospheric winds and temperatures in all simulations are shown to be strongly constrained by (i.e. slaved to) the stratosphere. Finally, it is demonstrated that the responses to OGWD and NGWD are non-additive due to their dependence and influence on the background winds and temperatures.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553-597, doi:10.1002/ qj.828.
    • de Grandpre, J., S. R. Beagley, V. I. Fomichev, E. Griffioen, J. C. McConnell, A. S. Medvedev, and T. G. Shepherd, 2000: Ozone climatology using interactive chemistry: Results from the Canadian Middle Atmosphere Model. J. Geophys. Res., 105 (D21), 26 475-26 491.
    • Eckermann, S. D., and Coauthors, 2009: High-altitude data assimilation system experiments for the northern summer mesosphere season of 2007. J. Atmos. Sol.-Terr. Phys., 71, 531-551.
    • Haynes, P. H., C. J. Marks, M. E. McIntyre, T. G. Shepherd, and K. P. Shine, 1991: On the ''downward control'' of extratropical diabatic circulations by eddy-induced mean zonal forces. J. Atmos. Sci., 48, 651-678.
    • Hitchcock, P., and T. G. Shepherd, 2013: Zonal-mean dynamics of extended recoveries from stratospheric sudden warmings. J. Atmos. Sci., 70, 688-707.
    • --, --, and G. L. Manney, 2013: Statistical characterization of Arctic polar-night jet oscillation events. J. Climate, 26, 2096- 2116.
    • Jin, J. J., and Coauthors, 2009: Comparison of CMAM simulations of carbon monoxide (CO), nitrous oxide (N2O), and methane (CH4) with observations from Odin/SMR, ACE-FTS, and Aura/MLS. Atmos. Chem. Phys., 9, 3233-3252, doi:10.5194/ acp-9-3233-2009.
    • Jonsson, A. I., J. de Grandpre, V. I. Fomichev, J. C. McConnell, and S. R. Beagley, 2004: Doubled CO2-induced cooling in the middle atmosphere: Photochemical analysis of the ozone radiative feedback. J. Geophys. Res., 109, D24103, doi:10.1029/ 2004JD005093.
    • Limpasuvan, V., J. H. Richter, Y. J. Orsolini, F. Stordal, and O.-K. Kvissel, 2012: The roles of planetary and gravity waves during a major stratospheric sudden warming as characterized in WACCM. J. Atmos. Sol.-Terr. Phys., 78-79, 84-98, doi:10.1016/ j.jastp.2011.03.004.
    • Livesey, N. J., and Coauthors, 2011: Earth Observing System (EOS) Aura Microwave Limb Sounder (MLS) Version 3.3 Level 2 data quality and description document. Jet Propulsion Laboratory Tech. Rep. JPL D-33509, 156 pp. [Available online at http://mls.jpl.nasa.gov/data/v3-3_data_quality_document.pdf.] Manney, G. L., and Coauthors, 2008a: The evolution of the stratopause during the 2006 major warming: Satellite data and assimilated meteorological analyses. J. Geophys. Res., 113, D11115, doi:10.1029/2007JD009097.
    • --, and Coauthors, 2008b: The high Arctic in extreme winters: Vortex, temperature, and MLS and ACE-FTS trace gas evolution. Atmos. Chem. Phys., 8, 505-522, doi:10.5194/ acp-8-505-2008.
    • --, and Coauthors, 2009a: Satellite observations and modeling of transport in the upper troposphere through the lower mesosphere during the 2006 major stratospheric sudden warming. Atmos. Chem. Phys., 9, 4775-4795, doi:10.5194/ acp-9-4775-2009.
    • --, and Coauthors, 2009b: Aura Microwave Limb Sounder observations of dynamics and transport during the recordbreaking 2009 Arctic stratospheric major warming. Geophys. Res. Lett., 36, L12815, doi:10.1029/2009GL038586.
    • McFarlane, N. A., 1987: The effect of orographically excited gravity wave drag on the circulation of the lower stratosphere and troposphere. J. Atmos. Sci., 44, 1775-1800.
    • Merryfield, W. J., and Coauthors, 2013: The Canadian Seasonal to Interannual Prediction System. Part I: Models and initialization. Mon. Wea. Rev., in press.
    • Plumb, R. A., 1983: Baroclinic instability of the summer mesosphere: a mechanism for the quasi-two-day wave? J. Atmos. Sci., 40, 262-270.
    • Polavarapu, S., S. Ren, Y. Rochon, D. Sankey, N. Ek, J. Koshyk, and D. Tarasick, 2005: Data assimilation with the Canadian Middle Atmosphere Model. Atmos.-Ocean, 43, 77-100.
    • Randall, C. E., V. L. Harvey, C. S. Singleton, P. F. Bernath, C. D. Boone, and J. U. Kozyra, 2006: Enhanced NOx in 2006 linked to strong upper stratospheric Arctic vortex. Geophys. Res. Lett., 33, L18811, doi:10.1029/2006GL027160.
    • --, --, D. E. Siskind, J. France, P. F. Bernath, C. D. Boone, and K. A. Walker, 2009: NOx descent in the Arctic middle atmosphere in early 2009. Geophys. Res. Lett., 36, L18811, doi:10.1029/ 2009GL039706.
    • Randel, W. J., 1987: The evaluation of winds from geopotential height data in the stratosphere. J. Atmos. Sci., 44, 3097- 3120.
    • Ren, S., S. Polavarapu, and T. G. Shepherd, 2008: Vertical propagation of information in a middle atmosphere data assimilation system by gravity-wave drag feedbacks. Geophys. Res. Lett., 35, L06804, doi:10.1029/2007GL032699.
    • --, --, S. R. Beagley, Y. Nezlin, and Y. J. Rochon, 2011: The impact of gravity wave drag on mesospheric analyses of the 2006 stratospheric major warming. J. Geophys. Res., 116, D19116, doi:10.1029/2011JD015943.
    • Scinocca, J. F., 2003: An accurate spectral nonorographic gravity wave drag parameterization for general circulation models. J. Atmos. Sci., 60, 667-682.
    • --, and N. A. McFarlane, 2000: The parametrization of drag induced by stratified flow over anisotropic orography. Quart. J. Roy. Meteor. Soc., 126, 2353-2393.
    • --, --, M. Lazare, J. Li, and D. Plummer, 2008: The CCCma third generation AGCM and its extension into the middle atmosphere. Atmos. Chem. Phys., 8, 7055-7074, doi:10.5194/ acp-8-7055-2008.
    • Shepherd, T. G., and T. A. Shaw, 2004: The angular momentum constraint on climate sensitivity and downward influence in the middle atmosphere. J. Atmos. Sci., 61, 2899-2908.
    • Siskind, D. E., S. D. Eckermann, J. P. McCormack, L. Coy, K. W. Hoppel, and N. L. Baker, 2010: Case studies of the mesospheric response to recent minor, major, and extended stratospheric warmings. J. Geophys. Res., 115, D00N03, doi:10.1029/ 2010JD014114.
    • SPARC CCMVal, 2010: SPARC Report on the evaluation of chemistry-climate models. SPARC Rep. 5, WCRP-132, WMO/TD-No. 1526, 434 pp. [Available online at http://www. atmosp.physics.utoronto.ca/SPARC/ccmval_final/index.php.]
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article