LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Klingaman, Nick; Woolnough, Steven (2014)
Publisher: Royal Meteorological Society
Languages: English
Types: Article
Subjects:
Identifiers:doi:10.1002/qj.2295
The role of air–sea coupling in the simulation of the Madden–Julian oscillation (MJO) is explored using two configurations of the Hadley Centre atmospheric model (AGCM), GA3.0, which differ only in F, a parameter controlling convective entrainment and detrainment. Increasing F considerably improves deficient MJO-like variability in the Indian and Pacific Oceans, but variability in and propagation through the Maritime Continent remains weak. By coupling GA3.0 in the tropical Indo-Pacific to a boundary-layer ocean model, KPP, and employing climatological temperature corrections, well resolved air–sea interactions are simulated with limited alterations to the mean state. At default F, when GA3.0 has a poor MJO, coupling produces a stronger MJO with some eastward propagation, although both aspects remain\ud deficient. These results agree with previous sensitivity studies using AGCMs with poor variability. At higher F, coupling does not affect MJO amplitude but enhances propagation through the Maritime Continent, resulting in an MJO that resembles observations. A sensitivity experiment with coupling in only the Indian Ocean reverses these improvements, suggesting coupling in the Maritime Continent and West Pacific is critical for propagation. We hypothesise that for AGCMs with a poor MJO, coupling provides a “crutch” to artificially augment\ud MJO-like activity through high-frequency SST anomalies.\ud In related experiments, we employ the KPP framework to analyse the impact of air–sea interactions in the fully coupled GA3.0, which at default F shows a similar MJO to uncoupled GA3.0. This is due to compensating effects: an\ud improvement from coupling and a degradation from mean-state errors. Future studies on the role of coupling should carefully separate these effects.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Achuthavarier D, Krishnamurthy V. 2011. Role of Indian and Pacific SST in Indian summer monsoon intraseasonal variability. J. Clim. 24: 2915-2930.
    • Anderson SP, Weller RA, Lukas RB. 1998. Surface buoyancy forcing and the mixed layer of the Western Pacific warm pool: Observations and 1D model results. J. Clim. 9: 3056-3085.
    • Arribas A, Glover M, Maidens A, Peterson K, Gordon M, MacLachlan C, Graham R, Fereday D, Camp J, Scaife AA, Xavier P, Colman A, Cusack S. 2011. The GloSea4 ensemble prediction system for seasonal forecasting. Mon. Weather Rev. 139: 1891-1910.
    • Benedict JJ, Maloney ED. 2013. Tropical intraseasonal variability in version 3 of the GFDL atmosphere model. J. Clim. 26: 426-449.
    • Bernie DJ, Woolnough SJ, Slingo JM. 2005. Modeling diurnal and intraseasonal variability of the ocean mixed layer. J. Clim. 18: 1190-1202.
    • Bernie DJ, Guilyardi E, Madec G, Slingo JM, Woolnough SJ, Cole J. 2008. Impact of resolving the diurnal cycle in an ocean-atmosphere GCM. Part 2: A diurnally coupled CGCM. Clim. Dyn. 31: 909-925.
    • Bhat GS, Gadgil S, Hareesh Kumar PV, Kalsi SR, Madhusoodanan P, Murty VSN, Prasada Rao CVK, Ramesh Babu V, Rao LVG, Rao RR, Ravichandran M, Reddy KG, Sanjeeva Rao P, Sengupta D, Sikka DR, Swain J, Vinayachandran PN. 2001. BOBMEX: The Bay of Bengal monsoon experiment. Bull. Am. Meteorol. Soc. 82: 2217-2243.
    • Camargo SJ, Wheeler MC, Sobel AH. 2009. Diagnosis of the MJO modulation of tropical cyclogenesis using an empirical index. J. Atmos. Sci. 66: 3061-3074.
    • Cassou C. 2008. Intraseasonal interaction between the Madden-Julian oscillation and the North Atlantic oscillation. Nature 455: 523-527.
    • Crueger T, Stevens B, Brokopf R. 2013. The Madden-Julian oscillation in ECHAM6 and the introduction of an objective MJO metric. J. Clim. 26: 3241-3257.
    • Derbyshire SH, Maidens AV, Milton SF, Stratton RA, Willett MR. 2011. Adaptive detrainment in a convective parameterization. Q. J. R. Meteorol. Soc. 137: 1856-1871.
    • Fu X, Wang B. 2004. The boreal-summer intraseasonal oscillations simulated in a hybrid coupled atmosphere-ocean model. Mon. Weather Rev. 132: 2628-2649.
    • Fu X, Wang B, Li T, McCreary JP. 2003. Coupling between northwardpropagating, intraseasonal oscillations and sea surface temperature in the Indian Ocean. J. Atmos. Sci. 60: 1733-1753.
    • Fu X, Wang B, Waliser DE, Tao L. 2007. Impact of atmosphere-ocean coupling on the predictability of monsoon intraseasonal oscillations. J. Atmos. Sci. 64: 157-174.
    • Goswami BN, Wu G, Yasunari T. 2006. The annual cycle, intraseasonal oscillations, and roadblock to seasonal predictability of the Asian summer monsoon. J. Clim. 19: 5078-5099.
    • Grabowski WW. 2006. Impact of explicit atmosphere-ocean coupling on MJO-like coherent structures in idealized aquaplanet simulations. J. Atmos. Sci. 63: 2289-2306.
    • Gregory D, Rowntree PR. 1990. A mass flux convection scheme with representation of cloud ensemble characteristics and stability dependent closure. Mon. Weather Rev. 118: 1483-1506.
    • Hendon HH. 2000. Impact of air-sea coupling on the Madden-Julian oscillation in a general circulation model. J. Atmos. Sci. 57: 3939-3952.
    • Hendon HH, Liebmann B. 1990. A composite study of the onset of the Australian summer monsoon. J. Atmos. Sci. 47: 2227-2240.
    • Hendon HH, Wheeler MC. 2007. Seasonal dependence of the MJO-ENSO relationship. J. Clim. 20: 531-543.
    • Inness PM, Slingo JM. 2003. Simulation of the Madden - Julian oscillation in a coupled general circulation model. Part I: Comparison with observations and an atmosphere-only GCM. J. Clim. 16: 345 - 364.
    • Inness PM, Slingo JM, Guilyardi E, Cole J. 2001. Organization of tropical convection in a GCM with varying vertical resolution: Implications for the simulation of the Madden - Julian Oscillation. Clim. Dyn. 17: 777 - 793.
    • Inness PM, Slingo JM, Guilyardi E, Cole J. 2003. Simulation of the Madden - Julian oscillation in a coupled general circulation model. Part II: The role of the basic state. J. Clim. 17: 365 - 382.
    • Janicot S, Mounier F, Gervois S, Sultan B, Kiladis G. 2010. Dynamics of the West African monsoon. Part V: The detection and role of the dominant modes of convectively coupled equatorial Rossby waves. J. Clim. 23: 4005 - 4024.
    • Jia X, Li C, Ling J, Zhang C. 2008. Impacts of a GCM's resolution on MJO simulation. Adv. Atmos. Sci. 25: 139 - 156.
    • Jones C, Waliser DE, Gautier C. 1998. The influence of the Madden - Julian oscillation on ocean surface heat fluxes and sea surface temperature. J. Clim. 11: 1057 - 1072.
    • Kemball-Cook S, Wang B, Fu X. 2002. Simulation of the ISO in the ECHAM4 model: The impact of coupling with an ocean model. J. Atmos. Sci. 59: 1433 - 1453.
    • Kessler WS, McPhaden MJ, Weickmann KM. 1995. Forcing of intraseasonal Kelvin waves in the equatorial Pacific. J. Geophys. Res. 100: 10613 - 10613.
    • Khairoutdinov M, Randall D, DeMott C. 2005. Simulation of the atmospheric general circulation using a cloud-resolving model as a superparameterisation of physical processes. J. Atmos. Sci. 62: 2136 - 2154.
    • Kim HM, Hoyos CD, Webster PJ, Kang IS. 2008. Sensitivity of MJO simulation and predictability to sea surface temperature variability. J. Clim. 21: 5304 - 5317.
    • Kim D, Sperber K, Stern W, Waliser D, Kang IS, Maloney E, Wang W, Weickmann K, Benedict J, Khairoutdinov M, Lee MI, Neale R, Suarez M, Thayer-Calder K, Zhang G. 2009. Application of MJO simulation diagnostics to climate models. J. Clim. 22: 6413 - 6436.
    • Kim HM, Hoyos CD, Webster PJ, Kang IS. 2010. Ocean - atmosphere coupling and the boreal winter MJO. Clim. Dyn. 35: 771 - 784, doi: 10.1007/s00 382-009-612-x.
    • Klingaman NP, Woolnough SJ. 2013. Using a case-study approach to improve the Madden - Julian oscillation in the Hadley Centre model. Q. J. R. Meteorol. Soc., doi:10.1002/qj.2314.
    • Klingaman NP, Inness PM, Weller H, Slingo JM. 2008a. The importance of high-frequency sea-surface temperature variability to the intraseasonal oscillation of Indian monsoon rainfall. J. Clim. 21: 6119 - 6140.
    • Klingaman NP, Weller H, Slingo JM, Inness PM. 2008b. The intraseasonal variability of the Indian summer monsoon using TMI sea-surface temperatures and ECMWF reanalysis. J. Clim. 21: 2519 - 2539.
    • Klingaman NP, Woolnough SJ, Weller H, Slingo JM. 2011. The impact of finer-resolution air - sea coupling on the intraseasonal oscillation of the Indian summer monsoon. J. Clim. 24: 2451 - 2468.
    • Kummerow C, Barnes W, Kozu T, Shiue J, Simpson J. 1998. The Tropical Rainfall Measuring Mission (TRMM) sensor package. J. Atmos. Oceanic Technol. 15: 809 - 817.
    • Large W, McWilliams J, Doney S. 1994. Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization. Rev. Geophys. 32: 363 - 403.
    • Lavender SL, Matthews AJ. 2009. Respose of the West African monsoon to the Madden - Julian oscillation. J. Clim. 22: 4097 - 4116.
    • Liess S, Bengtsson S. 2004. The intraseasonal oscillation in ECHAM4 Part II: Sensitivity studies. Clim. Dyn. 22: 671 - 688.
    • Liess S, Bengtsson L, Arpe K. 2004. The intraseasonal oscillation in ECHAM4. Part I: Coupled to a comprehensive ocean model. Clim. Dyn. 22: 671 - 688.
    • Lin JL, Kiladis GN, Mapes BE, Weickmann KM, Sperber KR, Lin W, Wheeler M, Shubert SD, Del Genio A, Donner LJ, Emori S, Gueremy JF, Hourdain F, Rasch PJ, Roeckner E, Scinocca JF. 2006. Tropical intraseasonal variability in 14 IPCC AR4 climate models. Part I: Convective signals. J. Clim. 19: 2665 - 2690.
    • Lin A, Li T, Fu X, Luo JJ, Masumoto Y. 2011. Effects of air - sea coupling on the boreal summer intraseasonl oscillations over the tropical Indian Ocean. Clim. Dyn. 37: 2303 - 2322.
    • Madden RA, Julian PR. 1971. Detection of a 40 - 50 day oscillation in the zonal wind in the tropical Pacific. J. Atmos. Sci. 28: 702 - 708.
    • Newman M, Sardeshmukh PD, Penland C. 2009. How important is air - sea coupling in ENSO and MJO evolution. J. Clim. 22: 2958 - 2977.
    • Pai DS, Bhate J, Sreejith OP, Hatwar HR. 2011. Impact of MJO on the intraseasonal variation of summer monsoon rainfall over India. Clim. Dyn. 36: 41 - 55.
    • Rajendran K, Kitoh A. 2006. Modulation of tropical intraseasonal oscillations by atmosphere - ocean coupling. J. Clim. 19: 366 - 391.
    • Reicher T, Roads JO. 2005. Long-range predictability in the Tropics, Part II: 30 - 60-day variability. J. Clim. 18: 634 - 650.
    • Slingo JM, Sperber KR, Boyle JS, Ceron JP, Dix M, Dugas B, Ebisuzaki W, Fyfe J, Gregory D, Gueremy JF, Hack J, Harzallah A, Inness P, Kitoh A, Lau WKM, McAvaney B, Madden R, Matthews A, Palmer TN, Park CK, Randall D, Renno N. 1996. Intraseasonal oscillations in 15 atmospheric general circulation models: Results from an AMIP diagnostic subproject. Clim. Dyn. 12: 325 - 357.
    • Smith DM, Murphy JM. 2007. An objective ocean temperature and salinity analysis using covariances from a global climate model. J. Geophys. Res. 112: C02022.
    • Sperber KR. 2004. Madden - Julian variability in NCAR CAM2.0 and CCSM2.0. Clim. Dyn. 23: 259 - 278.
    • Sperber KR, Annamalai H. 2008. Coupled model simulations of boreal summer intraseasonal (30 - 50 day) variability. Part 1: Systematic errors and caution on use of metrics. Clim. Dyn. 31: 345 - 372.
    • Sperber KR, Kim D. 2012. Simplified metrics for the identification of the Madden - Julian oscillation in models. Atmos. Sci. Lett. 13: 187 - 193.
    • Sperber KR, Gualdi S, Legutke S, Gayler V. 2005. The Madden - Julian oscillation in ECHAM4 coupled and uncoupled general circulation models. Clim. Dyn. 25: 117 - 140.
    • Stratton RA, Stirling A, Derbyshire S. 2009. 'Changes and developments to convective momentum transport (CMT) parameterization based on analysis of CRM and SCM', Technical Report 590. Forecasting R&D, Met Office: Exeter, UK.
    • Uppala SM, Ka˚llberg PW, Simmons AJ, Andrae U, da Costa Bechtold V, Fiorino M, Gibson JK, Haseler J, Hernandez A, Kelly GA, Li X, Onogi K, Saarinen S, Sokka N, Allan RP, Andersson E, Arpe K, Balmaseda MA, Beljaars ACM, van de Berg L, Bidlot J, Bormann N, Caires S, Chevallier F, Dethof A, Dragosavac M, Fisher M, Fuentes M, Hagemann S, Ho´ lm E, Hoskins BJ, Isaksen L, Janssen PAEM, Jenne R, McNally AP, Mahfouf JF, Morcrette JJ, Rayner NA, Saunders RW, Simon P, Sterl A, Trenberth KE, Untch A, Vasiljevic D, Viterbo P, Woolen J. 2005. The ERA-40 re-analysis. Q. J. R. Meteorol. Soc. 131: 2961 - 3012.
    • Valcke S, Caubel A, Declat D, Terray L. 2003. 'OASIS3 Ocean Atmosphere Sea Ice Soil user's guide', Technical Report TR/CMGC/03/69. CERFACS: Toulouse, France.
    • Vecchi GA, Harrison DE. 2002. Monsoon breaks and subseasonal sea surface temperature variability in the Bay of Bengal. J. Clim. 15: 1485 - 1493.
    • Vitart F. 2009. Impact of the Madden Julian oscillation on tropical storms and risk of landfall in the ECMWF forecast system. Geophys. Res. Lett. 36: L15802.
    • Vitart F, Molteni F. 2010. Simulation of the Madden - Julian oscillation and its teleconnections in the ECMWF forecast system. Q. J. R. Meteorol. Soc. 136: 842 - 855.
    • Waliser D, Murtugudde R, Lucas LE. 2004. Indo-Pacific Ocean response to atmospheric intraseasonal variability: 2. Boreal summer and the intraseasonal oscillation. J. Geophys. Res. 109: C03030.
    • Walters DN, Best MJ, Bushell AC, Copsey D, Edwards JM, Falloon PD, Harris CM, Lock AP, Manners JC, Morcrette CJ, Roberts MJ, Stratton RA, Webster S, Wilkinson JM, Willett MR, Boutle IA, Earnshaw PD, Hill PG, MacLachlan C, Martin GM, Moufouma-Okia W, Palmer MD, Petch JC, Rooney GG, Scaife AA, Williams KD. 2011. The Met Office Unified Model Global Atmosphere 3.0/3.1 and JULES Global Land 3.0/3.1 configurations. Geosci. Model Dev. 4: 919 - 941.
    • Weng SP, Yu JY. 2010. Impacts of Pacific and Indian Ocean coupling on wintertime tropical intraseasonal oscillatioon: a basin-coupling CGCM study. Int. J. Climatol. 30: 359 - 371.
    • Wentz FJ. 2000. Satellite measurements of sea surface temperature through clouds. Science 288: 847 - 850.
    • Wheeler MC, Hendon HH. 2004. An all-season real-time multivariate MJO index: Development of an index for monitoring and prediction. Mon. Weather Rev. 132: 1917 - 1932.
    • Wheeler MC, Hendon HH, Cleland S, Meinke H, Donald A. 2009. Impacts of the Madden - Julian oscillation on Australian rainfall and circulation. J. Clim. 22: 1482 - 1498.
    • Woolnough SJ, Slingo JM, Hoskins BJ. 2000. The relationship between convection and sea surface temperatures on intraseasonal timescales. J. Clim. 13: 2086 - 2104.
    • Woolnough SJ, Slingo JM, Hoskins BJ. 2001. The organization of tropical convection by intraseasonal sea surface temperature anomalies. Q. J. R. Meteorol. Soc. 127: 887 - 907.
    • Woolnough SJ, Vitart F, Balmaseda MA. 2007. The role of the ocean in the Madden - Julian Oscillation: Implications for MJO prediction. Q. J. R. Meteorol. Soc. 133: 117 - 128.
    • Yang GY, Slingo J, Hoskins B. 2009. Convectively coupled equatorial waves in high-resolution Hadley Centre climate models. J. Clim. 22: 1897 - 1919.
    • Zhu H, Hendon HH, Jakob C. 2009. Convection in a parameterized and superparameterized model and its role in the representation of the MJO. J. Atmos. Sci. 66: 2796 - 2811.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article