OpenAIRE is about to release its new face with lots of new content and services.
During September, you may notice downtime in services, while some functionalities (e.g. user registration, login, validation, claiming) will be temporarily disabled.
We apologize for the inconvenience, please stay tuned!
For further information please contact helpdesk[at]openaire.eu

fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Taylor, Frank E. (2015)
Publisher: American Physical Society
Languages: English
Types: Article
Subjects: scattering [p p], pair production [heavy lepton], hadronic decay [W], ATLAS, mass generation [neutrino], Proton-Proton Collisions, Pair Production, 530, Physical Sciences, Heavy Leptons, Nuclear and High Energy Physics; ATLAS; LHC; Heavy lepton, Settore FIS/04 - Fisica Nucleare e Subnucleare, High Energy Physics - Experiment, CERN LHC Coll, seesaw model, missing-energy [transverse momentum], (2jet 2lepton) [final state], Nuclear and High Energy Physics, lower limit [mass], 8000 GeV-cms, Experimental results, heavy leptons; pp collisions; ATLAS detector, Exotics, decay modes [heavy lepton], Física, Science & Technology, Fysik, Settore FIS/01 - Fisica Sperimentale, Large Hadron Collider, colliding beams [p p], 530 Physics
ddc: ddc:530
Artículo escrito por un elevado número de autores, solo se referencian el que aparece en primer lugar, el nombre del grupo de colaboración, si le hubiere, y los autores pertenecientes a la UAM A search for the pair production of heavy leptons (N0, L±) predicted by the type-III seesaw theory formulated to explain the origin of small neutrino masses is presented. The decay channels N0→W±l (ℓ=e,μ,τ) and L±→W±ν (ν=νe,νμ,ντ) are considered. The analysis is performed using the final state that contains two leptons (electrons or muons), two jets from a hadronically decaying W boson and large missing transverse momentum. The data used in the measurement correspond to an integrated luminosity of 20.3 fb-1 of pp collisions at √s=8 TeV collected by the ATLAS detector at the LHC. No evidence of heavy lepton pair production is observed. Heavy leptons with masses below 325-540 GeV are excluded at the 95% confidence level, depending on the theoretical scenario considered We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC, and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST, and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR, and VSC CR, Czech Republic; DNRF, DNSRC, and Lundbeck Foundation, Denmark; EPLANET, ERC, and NSRF, European Union; IN2P3-CNRS and CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, DFG, HGF, MPG, and AvH Foundation, Germany; GSRT and NSRF, Greece; RGC, Hong Kong SAR, China; ISF, MINERVA, GIF, ICORE, and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; BRF and RCN, Norway; MNiSW and NCN, Poland; GRICES and FCT, Portugal; MNE/IFA, Romania; MES of Russia and NRC KI, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MIZŠ, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF, and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society, and Leverhulme Trust, United Kingdom; DOE and NSF, United States of America. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, and Sweden), CCIN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (U.K.) and BNL (USA) and in the Tier- 2 facilities worldwide
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • [1] K. Olive et al. (Particle Data Group), Chin. Phys. C 38, 090001 (2014).
    • [2] E. Ma, Phys. Rev. Lett. 81, 1171 (1998).
    • [3] P. Minkowski, Phys. Lett. B 67, 421 (1977).
    • [4] R. N. Mohapatra and G. Senjanovic, Phys. Rev. Lett. 44, 912 (1980).
    • [5] R. Foot, H. Lew, X. He, and G. C. Joshi, Z. Phys. C 44, 441 (1989).
    • [6] CMS Collaboration, Phys. Lett. B 718, 348 (2012).
    • [7] ATLAS Collaboration, arXiv:1506.01291.
    • [8] P. Achard et al. (L3 Collaboration), Phys. Lett. B 517, 75 (2001).
    • [9] C. Biggio and F. Bonnet, Eur. Phys. J. C 72, 1899 (2012).
    • [10] R. Franceschini, T. Hambye, and A. Strumia, Phys. Rev. D 78, 033002 (2008).
    • [11] J. Aguilar-Saavedra, Nucl. Phys. B828, 289 (2010).
    • [12] K. Kumericki, I. Picek, and B. Radovcic, Phys. Rev. D 86, 013006 (2012).
    • [13] A. Abada, C. Biggio, F. Bonnet, M. Gavela, and T. Hambye, Phys. Rev. D 78, 033007 (2008).
    • [14] A. Abada, C. Biggio, F. Bonnet, M. Gavela, and T. Hambye, J. High Energy Phys. 12 (2007) 061.
    • [15] F. del Aguila, J. de Blas, and M. Perez-Victoria, Phys. Rev. D 78, 013010 (2008).
    • [16] ATLAS Collaboration, JINST 3, S08003 (2008).
    • [17] ATLAS Collaboration, Eur. Phys. J. C 73, 2518 (2013).
    • [18] ATLAS Collaboration, Eur. Phys. J. C 72, 1849 (2012).
    • [19] J. Alwall, M. Herquet, F. Maltoni, O. Mattelaer, and T. Stelzer, J. High Energy Phys. 06 (2011) 128.
    • [20] F. Maltoni and T. Stelzer, J. High Energy Phys. 02 (2003) 027.
    • [21] A. Martin, W. Stirling, R. Thorne, and G. Watt, Eur. Phys. J. C 63, 189 (2009).
    • [22] T. Sjöstrand, S. Mrenna, and P. Skands, Comput. Phys. Commun. 178, 852 (2008).
    • [23] T. Gleisberg, S. Höche, F. Krauss, M. Schönherr, S. Schumann, F Siegert, and J. Winter, J. High Energy Phys. 02 (2009) 007.
    • [24] S. Catani, F. Krauss, R. Kuhn, and B. Webber, J. High Energy Phys. 11 (2001) 063.
    • [25] H.-L. Lai, M. Guzzi, J. Huston, Z. Li, P. M. Nadolsky, J. Pumplin, and C.-P. Yuan, Phys. Rev. D 82, 074024 (2010).
    • [26] Production mechanisms involving weak interactions at the Born level (of order α4EW without considering the boson decay, where αEW is the electroweak coupling constant) are referred to as electroweak production [55]. Production mechanisms involving both the strong and electroweak interactions at Born level (of order α2Sα2EW, where αS is the strong coupling constant) are referred to as strong production.
    • [27] S. Frixione and B. R. Webber, J. High Energy Phys. 06 (2002) 029.
    • [28] G. Corcella, I. G. Knowles, G. Marchesini, S Moretti, K. Odagiri, P. Richardson, M. H Seymour, B. R. Webber, J. High Energy Phys. 01 (2001) 010.
    • [29] J. Butterworth, J. R. Forshaw, and M. Seymour, Z. Phys. C 72, 637 (1996).
    • [30] J. Pumplin, D. R. Stump, J. Huston, H.-L. Lai, P. Nadolsky, and Wu-Ki Tung, J. High Energy Phys. 07 (2002) 012.
    • [31] B. P. Kersevan and E. Richter-Was, Comput. Phys. Commun. 184, 919 (2013).
    • [32] T. Sjöstrand, S. Mrenna, and P. Skands, J. High Energy Phys. 05 (2006) 026.
    • [33] S. Agostinelli et al. (GEANT4 Collaboration), Nucl. Instrum. Methods Phys. Res., Sect. A 506, 250 (2003).
    • [34] ATLAS Collaboration, Eur. Phys. J. C 70, 823 (2010).
    • [35] ATLAS Collaboration, Report No. ATL-PHYS-PUB-2010- 013 (2010), http://cdsweb.cern.ch/record/1300517.
    • [36] ATLAS Collaboration, Eur. Phys. J. C 74, 2941 (2014).
    • [37] ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the center of the detector and the z axis along the beam pipe. The x axis points from the IP to the center of the LHC ring, and the y axis points upward. Cylindrical coordinates ðr; ϕÞ are used in the transverse plane, ϕ being the azimuthal angle around the beam pipe. The pseudorapidity is defined in terms of the polar angle θ as η ¼ − ln tanðθ=2Þ.
    • [38] ATLAS Collaboration, arXiv:1411.2921.
    • [39] M. Cacciari, G. P. Salam, and G. Soyez, J. High Energy Phys. 04 (2008) 063.
    • [40] ATLAS Collaboration, Eur. Phys. J. C 73, 2304 (2013).
    • [41] ATLAS Collaboration, Report No. ATLAS-CONF-2011- 102 (2011), http://cdsweb.cern.ch/record/1369219.
    • [42] ATLAS Collaboration, Eur. Phys. J. C 72, 1844 (2012).
    • [43] ATLAS Collaboration, Eur. Phys. J. C 72, 1909 (2012).
    • [44] P. Nason, J. High Energy Phys. 11 (2004) 040).
    • [45] S. Frixione, P. Nason, and C. Oleari, J. High Energy Phys. 11 (2007) 070.
    • [46] S. Alioli, P. Nason, C. Oleari, and E. Re, J. High Energy Phys. 06 (2010) 043.
    • [47] M. L. Mangano, M. Moretti, F. Piccinini, R. Pittau, and A. D. Polosa, J. High Energy Phys. 07 (2003) 001.
    • [48] F. Aaron et al. (H1 and ZEUS Collaborations), J. High Energy Phys. 01 (2010) 109.
    • [49] ATLAS Collaboration, Report No. ATL-PHYS-PUB-2013- 005 (2013), https://cds.cern.ch/record/1532067.
    • [50] ATLAS Collaboration, Eur. Phys. J. C 72, 2043 (2012).
    • [51] J. Alwall et al., Eur. Phys. J. C 53, 473 (2008).
    • [52] ATLAS Collaboration, Eur. Phys. J. C 74, 3130 (2014).
    • [53] ATLAS Collaboration, Eur. Phys. J. C 74, 3071 (2014).
    • [54] T. Junk, Nucl. Instrum. Methods Phys. Res., Sect. A 434, 435 (1999).
    • [55] ATLAS Collaboration, Phys. Rev. Lett. 113, 141803 (2014).
  • No related research data.
  • No similar publications.
Cookies make it easier for us to provide you with our services. With the usage of our services you permit us to use cookies.
More information Ok