LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Taylor, Frank E. (2015)
Publisher: American Physical Society
Journal: Physical Review D
Languages: English
Types: Article
Subjects: scattering [p p], pair production [heavy lepton], hadronic decay [W], ATLAS, mass generation [neutrino], Particle Physics - Experiment, Proton-Proton Collisions, Pair Production, 530, Physical Sciences, Heavy Leptons, Nuclear and High Energy Physics; ATLAS; LHC; Heavy lepton, Settore FIS/04 - Fisica Nucleare e Subnucleare, High Energy Physics - Experiment, CERN LHC Coll, seesaw model, missing-energy [transverse momentum], (2jet 2lepton) [final state], Nuclear and High Energy Physics, lower limit [mass], 8000 GeV-cms, experimental results, heavy leptons; pp collisions; ATLAS detector, Exotics, decay modes [heavy lepton], Fysik, Física, Science & Technology, Settore FIS/01 - Fisica Sperimentale, Large Hadron Collider, colliding beams [p p], 530 Physics
ddc: ddc:530

Classified by OpenAIRE into

arxiv: High Energy Physics::Phenomenology, High Energy Physics::Experiment, Nuclear Experiment
A search for the pair-production of heavy leptons ($N^0,L^{\pm}$) predicted by the type-III seesaw theory formulated to explain the origin of small neutrino masses is presented. The decay channels $N^0\rightarrow W^{\pm}l^{\mp}$ ($\ell = e, \mu, \tau$) and $L^{\pm}\rightarrow W^\pm \nu$ ($\nu=\nu_e, \nu_\mu, \nu_\tau$) are considered. The analysis is performed using the final state that contains two leptons (electrons or muons), two jets from a hadronically decaying $W$ boson, and large missing transverse momentum. The data used in the measurement correspond to an integrated luminosity of $20.3\,fb^{-1}$ of $pp$ collisions at $\sqrt{s} = 8$ TeV collected by the ATLAS detector at the LHC. No evidence of heavy lepton pair-production is observed. Heavy leptons with masses below 325--540 GeV are excluded at the 95% confidence level, depending on the theoretical scenario considered. A search for the pair production of heavy leptons (N0,L±) predicted by the type-III seesaw theory formulated to explain the origin of small neutrino masses is presented. The decay channels N0→W±l∓ (ℓ=e,μ,τ) and L±→W±ν (ν=νe,νμ,ντ) are considered. The analysis is performed using the final state that contains two leptons (electrons or muons), two jets from a hadronically decaying W boson and large missing transverse momentum. The data used in the measurement correspond to an integrated luminosity of 20.3  fb-1 of pp collisions at s=8  TeV collected by the ATLAS detector at the LHC. No evidence of heavy lepton pair production is observed. Heavy leptons with masses below 325–540 GeV are excluded at the 95% confidence level, depending on the theoretical scenario considered. A search for the pair-production of heavy leptons ($N^0,L^{\pm}$) predicted by the type-III seesaw theory formulated to explain the origin of small neutrino masses is presented. The decay channels $N^0\rightarrow W^{\pm}l^{\mp}$ ($\ell = e, \mu, \tau$) and $L^{\pm}\rightarrow W^\pm \nu$ ($\nu=\nu_e, \nu_\mu, \nu_\tau$) are considered. The analysis is performed using the final state that contains two leptons (electrons or muons), two jets from a hadronically decaying $W$ boson, and large missing transverse momentum. The data used in the measurement correspond to an integrated luminosity of $20.3\,fb^{-1}$ of $pp$ collisions at $\sqrt{s} = 8$ TeV collected by the ATLAS detector at the LHC. No evidence of heavy lepton pair-production is observed. Heavy leptons with masses below 325--540 GeV are excluded at the 95% confidence level, depending on the theoretical scenario considered.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • [1] K. Olive et al. (Particle Data Group), Chin. Phys. C 38, 090001 (2014).
    • [2] E. Ma, Phys. Rev. Lett. 81, 1171 (1998).
    • [3] P. Minkowski, Phys. Lett. B 67, 421 (1977).
    • [4] R. N. Mohapatra and G. Senjanovic, Phys. Rev. Lett. 44, 912 (1980).
    • [5] R. Foot, H. Lew, X. He, and G. C. Joshi, Z. Phys. C 44, 441 (1989).
    • [6] CMS Collaboration, Phys. Lett. B 718, 348 (2012).
    • [7] ATLAS Collaboration, arXiv:1506.01291.
    • [8] P. Achard et al. (L3 Collaboration), Phys. Lett. B 517, 75 (2001).
    • [9] C. Biggio and F. Bonnet, Eur. Phys. J. C 72, 1899 (2012).
    • [10] R. Franceschini, T. Hambye, and A. Strumia, Phys. Rev. D 78, 033002 (2008).
    • [11] J. Aguilar-Saavedra, Nucl. Phys. B828, 289 (2010).
    • [12] K. Kumericki, I. Picek, and B. Radovcic, Phys. Rev. D 86, 013006 (2012).
    • [13] A. Abada, C. Biggio, F. Bonnet, M. Gavela, and T. Hambye, Phys. Rev. D 78, 033007 (2008).
    • [14] A. Abada, C. Biggio, F. Bonnet, M. Gavela, and T. Hambye, J. High Energy Phys. 12 (2007) 061.
    • [15] F. del Aguila, J. de Blas, and M. Perez-Victoria, Phys. Rev. D 78, 013010 (2008).
    • [16] ATLAS Collaboration, JINST 3, S08003 (2008).
    • [17] ATLAS Collaboration, Eur. Phys. J. C 73, 2518 (2013).
    • [18] ATLAS Collaboration, Eur. Phys. J. C 72, 1849 (2012).
    • [19] J. Alwall, M. Herquet, F. Maltoni, O. Mattelaer, and T. Stelzer, J. High Energy Phys. 06 (2011) 128.
    • [20] F. Maltoni and T. Stelzer, J. High Energy Phys. 02 (2003) 027.
    • [21] A. Martin, W. Stirling, R. Thorne, and G. Watt, Eur. Phys. J. C 63, 189 (2009).
    • [22] T. Sjöstrand, S. Mrenna, and P. Skands, Comput. Phys. Commun. 178, 852 (2008).
    • [23] T. Gleisberg, S. Höche, F. Krauss, M. Schönherr, S. Schumann, F Siegert, and J. Winter, J. High Energy Phys. 02 (2009) 007.
    • [24] S. Catani, F. Krauss, R. Kuhn, and B. Webber, J. High Energy Phys. 11 (2001) 063.
    • [25] H.-L. Lai, M. Guzzi, J. Huston, Z. Li, P. M. Nadolsky, J. Pumplin, and C.-P. Yuan, Phys. Rev. D 82, 074024 (2010).
    • [26] Production mechanisms involving weak interactions at the Born level (of order α4EW without considering the boson decay, where αEW is the electroweak coupling constant) are referred to as electroweak production [55]. Production mechanisms involving both the strong and electroweak interactions at Born level (of order α2Sα2EW, where αS is the strong coupling constant) are referred to as strong production.
    • [27] S. Frixione and B. R. Webber, J. High Energy Phys. 06 (2002) 029.
    • [28] G. Corcella, I. G. Knowles, G. Marchesini, S Moretti, K. Odagiri, P. Richardson, M. H Seymour, B. R. Webber, J. High Energy Phys. 01 (2001) 010.
    • [29] J. Butterworth, J. R. Forshaw, and M. Seymour, Z. Phys. C 72, 637 (1996).
    • [30] J. Pumplin, D. R. Stump, J. Huston, H.-L. Lai, P. Nadolsky, and Wu-Ki Tung, J. High Energy Phys. 07 (2002) 012.
    • [31] B. P. Kersevan and E. Richter-Was, Comput. Phys. Commun. 184, 919 (2013).
    • [32] T. Sjöstrand, S. Mrenna, and P. Skands, J. High Energy Phys. 05 (2006) 026.
    • [33] S. Agostinelli et al. (GEANT4 Collaboration), Nucl. Instrum. Methods Phys. Res., Sect. A 506, 250 (2003).
    • [34] ATLAS Collaboration, Eur. Phys. J. C 70, 823 (2010).
    • [35] ATLAS Collaboration, Report No. ATL-PHYS-PUB-2010- 013 (2010), http://cdsweb.cern.ch/record/1300517.
    • [36] ATLAS Collaboration, Eur. Phys. J. C 74, 2941 (2014).
    • [37] ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the center of the detector and the z axis along the beam pipe. The x axis points from the IP to the center of the LHC ring, and the y axis points upward. Cylindrical coordinates ðr; ϕÞ are used in the transverse plane, ϕ being the azimuthal angle around the beam pipe. The pseudorapidity is defined in terms of the polar angle θ as η ¼ − ln tanðθ=2Þ.
    • [38] ATLAS Collaboration, arXiv:1411.2921.
    • [39] M. Cacciari, G. P. Salam, and G. Soyez, J. High Energy Phys. 04 (2008) 063.
    • [40] ATLAS Collaboration, Eur. Phys. J. C 73, 2304 (2013).
    • [41] ATLAS Collaboration, Report No. ATLAS-CONF-2011- 102 (2011), http://cdsweb.cern.ch/record/1369219.
    • [42] ATLAS Collaboration, Eur. Phys. J. C 72, 1844 (2012).
    • [43] ATLAS Collaboration, Eur. Phys. J. C 72, 1909 (2012).
    • [44] P. Nason, J. High Energy Phys. 11 (2004) 040).
    • [45] S. Frixione, P. Nason, and C. Oleari, J. High Energy Phys. 11 (2007) 070.
    • [46] S. Alioli, P. Nason, C. Oleari, and E. Re, J. High Energy Phys. 06 (2010) 043.
    • [47] M. L. Mangano, M. Moretti, F. Piccinini, R. Pittau, and A. D. Polosa, J. High Energy Phys. 07 (2003) 001.
    • [48] F. Aaron et al. (H1 and ZEUS Collaborations), J. High Energy Phys. 01 (2010) 109.
    • [49] ATLAS Collaboration, Report No. ATL-PHYS-PUB-2013- 005 (2013), https://cds.cern.ch/record/1532067.
    • [50] ATLAS Collaboration, Eur. Phys. J. C 72, 2043 (2012).
    • [51] J. Alwall et al., Eur. Phys. J. C 53, 473 (2008).
    • [52] ATLAS Collaboration, Eur. Phys. J. C 74, 3130 (2014).
    • [53] ATLAS Collaboration, Eur. Phys. J. C 74, 3071 (2014).
    • [54] T. Junk, Nucl. Instrum. Methods Phys. Res., Sect. A 434, 435 (1999).
    • [55] ATLAS Collaboration, Phys. Rev. Lett. 113, 141803 (2014).
  • No related research data.
  • No similar publications.

Share - Bookmark

Published in

Funded by projects

  • EC | EPLANET
  • SNSF | Teilchenphysik-Experimente...

Related to

  • egiEGI virtual organizations: atlas

Cite this article