Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Bulushev, Dmitri A.; Zacharska, Monika; Lisitsyn, Alexander S.; Podyacheva, Olga Yu.; Hage, Fredrik S.; Ramasse, Quentin M.; Bangert, Ursel; Bulusheva, Lyubov G. (2016)
Publisher: American Chemical Society
Languages: English
Types: Article
Formic acid is a valuable chemical derived from biomass, as it has a high hydrogen-storage capacity and appears to be an attractive source of hydrogen for various applications. Hydrogen production via formic acid decomposition is often based on using supported catalysts with Pt-group metal nanoparticles. In the present paper, we show that the decomposition of the acid proceeds more rapidly on single metal atoms (by up to 1 order of magnitude). These atoms can be obtained by rather simple means through anchoring Pt-group metals onto mesoporous N-functionalized carbon nanofibers. A thorough evaluation of the structure of the active site by aberration-corrected scanning transmission electron microscopy (ac-STEM) in high-angle annular dark field (HAADF) mode and by CO chemisorption, X-ray photoelectron spectroscopy (XPS), and quantum-chemical calculations reveals that the metal atom is coordinated by a pair of pyridinic nitrogen atoms at the edge of graphene sheets. The chelate binding provides an ionic/electron-deficient state of these atoms that prevents their aggregation and thereby leads to an excellent stability under the reaction conditions. Catalysts with single atoms have also shown very high selectivity. Evidently, the findings can be extended to hydrogen production from other chemicals and can be helpful for improving other energy-related and environmentally benign catalytic processes.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • (5) Singh, A. K.; Singh, S.; Kumar, A. Catal. Sci. Technol. 2016, 6, 12-40 (6) Hayes, D. J.; Fitzpatrick, S.; Hayes, M. H. B.; Ross, J. R. H. In BiorefineriesIndustrial Processes and Products; Kamm, B., Gruber, P. R., Kamm, M., Eds.; Wiley-VCH: Weinheim, 2006; Vol. 1, p 139-164.
    • (7) Li, J.; Ding, D. J.; Deng, L.; Guo, Q. X.; Fu, Y. ChemSusChem 2012, 5, 1313-1318.
    • (8) Bulushev, D. A.; Ross, J. R. H. Catal. Today 2011, 163, 42-46.
    • (9) Serrano-Ruiz, J. C.; Braden, D. J.; West, R. M.; Dumesic, J. A. Appl. Catal., B 2010, 100, 184-189.
    • (10) Thomas, J. M. Design and Applications of Single-Site Heterogeneous Catalysts; Imperial College Press: London, 2012, p 1-293.
    • (11) Bruix, A.; Lykhach, Y.; Matolinova, I.; Neitzel, A.; Skala, T.; Tsud, N.; Vorokhta, M.; Stetsovych, V.; Sevcikova, K.; Myslivecek, J.; Fiala, R.; Vaclavu, M.; Prince, K. C.; Bruyere, S.; Potin, V.; Illas, F.; Matolin, V.; Libuda, J.; Neyman, K. M. Angew. Chem., Int. Ed. 2014, 53, 10525-10530.
    • (12) Yang, X. F.; Wang, A. Q.; Qiao, B. T.; Li, J.; Liu, J. Y.; Zhang, T. Acc. Chem. Res. 2013, 46, 1740-1748.
    • (13) Kochubey, D. I.; Chesnokov, V. V.; Malykhin, S. E. Carbon 2012, 50, 2782-2787.
    • (15) Peterson, E. J.; DeLaRiva, A. T.; Lin, S.; Johnson, R. S.; Guo, H.; Miller, J. T.; Kwak, J. H.; Peden, C. H. F.; Kiefer, B.; Allard, L. F.; Ribeiro, F. H.; Datye, A. K. Nat. Commun. 2014, 5, 4885.
    • (16) Yan, H.; Cheng, H.; Yi, H.; Lin, Y.; Yao, T.; Wang, C.; Li, J.; Wei, S.; Lu, J. J. Am. Chem. Soc. 2015, 137, 10484-10487.
    • (17) Moses-DeBusk, M.; Yoon, M.; Allard, L. F.; Mullins, D. R.; Wu, Z.; Yang, X.; Veith, G.; Stocks, G. M.; Narula, C. K. J. Am. Chem. Soc. 2013, 135, 12634-12645.
    • (18) Narula, C. K.; Allard, L. F.; Stocks, G. M.; Moses-DeBusk, M. Sci. Rep. 2014, 4, (19) Vile, G.; Albani, D.; Nachtegaal, M.; Chen, Z.; Dontsova, D.; Antonietti, M.; Lopez, N.; Perez-Ramirez, J. Angew. Chem., Int. Ed. 2015, 54, 11265-11269.
    • (20) Zhang, X.; Shi, H.; Xu, B. Q. Angew. Chem., Int. Ed. 2005, 44, 7132-7135.
    • (21) Hackett, S. E. J.; Brydson, R. M.; Gass, M. H.; Harvey, I.; Newman, A. D.; Wilson, K.; Lee, A. F. Angew. Chem., Int. Ed. 2007, 46, 8593-8596.
    • (22) Sun, S. H.; Zhang, Z. J.; Gauquelin, N.; Chen, N.; Zhou, J.; Yang, S.; Chen, W.; Meng, X.; Geng, D.; Banis, M. N.; Li, R. Y.; Ye, S. Y.; Knights, S.; Botton, G. A.; Sham, T. K.; Sun, X. L. Sci. Rep. 2013, 3, 1775.
    • (23) Belyi, A. S.; Smolikov, M. D.; Kir'yanov, D. I.; Udras, I. E. Russ. J. Gen. Chem. 2007, 77, 2243-2254.
    • (24) Yi, N.; Saltsburg, H.; Flytzani-Stephanopoulos, M. ChemSusChem 2013, 6, 816-819.
    • (25) Flytzani-Stephanopoulos, M. Acc. Chem. Res. 2014, 47, 783-792.
    • (26) Ciftci, A.; Ligthart, D.; Pastorino, P.; Hensen, E. J. M. Appl. Catal., B 2013, 130, 325-335.
  • No related research data.
  • Discovered through pilot similarity algorithms. Send us your feedback.

Share - Bookmark

Cite this article