LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
McCafferty, D.J.; Gallon, S.; Nord, A. (2015)
Publisher: BioMed Central
Languages: English
Types: Article
Subjects:
The thermal physiology of most birds and mammals is characterised by considerable spatial and temporal variation in body temperature. Body temperature is, therefore, a key parameter in physiological, behavioural and ecological research. Temperature measurements on freely moving or free-ranging animals in the wild are challenging but can be undertaken using a range of techniques. Internal temperature may be sampled using thermometry, surgically implanted loggers or transmitters, gastrointestinal or non-surgically placed devices. Less invasive approaches measure peripheral temperature with subcutaneous passive integrated transponder tags or skin surface-mounted radio transmitters and data loggers, or use infrared thermography to record surface temperature. Choice of technique is determined by focal research question and region of interest that reflects appropriate physiological or behavioural causal mechanisms of temperature change, as well as welfare and logistical considerations. Particularly required are further studies that provide opportunities of continuously sampling from multiple sites from within the body. This will increase our understanding of thermoregulation and temperature variation in different parts of the body and how these temperatures may change in response to physiological, behavioural and environmental parameters. Technological advances that continue to reduce the size and remote sensing capability of temperature recorders will greatly benefit field research.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 1. Randall D, Burggren W, French K. Eckert animal physiology: mechanisms and adaptations. Eckert animal physiology: mechanisms and adaptations, vol. 4. 1997.
    • 2. Hofmann AA, Chown SL, Clusella-Trullas S. Upper thermal limits in terrestrial ectotherms: how constrained are they? Funct Ecol. 2013;27(4):934-49. doi:10.1111/j.1365-2435.2012.02036.x.
    • 3. Duman JG. An early classic study of freeze avoidance in marine fish. J Exp Biol. 2014;217(6):820-3. doi:10.1242/jeb.092239.
    • 4. Clarke A, Portner H-O. Temperature, metabolic power and the evolution of endothermy. Biol Rev. 2010;85(4):703-27. doi:10.1111/j.1469-185X.2010.00122.x.
    • 5. Clarke A, Rothery P. Scaling of body temperature in mammals and birds. Funct Ecol. 2008;22(1):58-67. doi:10.1111/j.1365-2435.2007.01341.x.
    • 6. Barnes BM. Freeze avoidance in a mammal-body temperatures below 0 degrees C in an arctic hibernator. Science. 1989;244(4912):1593-5. doi:10.1126/science.2740905.
    • 7. Khaliq I, Hof C, Prinzinger R, Boehning-Gaese K, Pfenninger M. Global variation in thermal tolerances and vulnerability of endotherms to climate change. Proc R Soc B Biol Sci. 2014;281(1789). doi:10.1098/ rspb.2014.1097.
    • 8. Sunday JM, Bates AE, Dulvy NK. Global analysis of thermal tolerance and latitude in ectotherms. Proc R Soc B Biol Sci. 2011;278(1713):1823-30. doi:10.1098/rspb.2010.1295.
    • 9. Yahav S. Regulation of body temperature: strategies and mechanisms, chapter 37. In: Scanes CG, editor. Sturkie's avian physiology. 6th ed. San Diego: Academic Press; 2015. p. 869-905.
    • 10. Taylor NAS, Tipton MJ, Kenny GP. Considerations for the measurement of core, skin and mean body temperatures. J Therm Biol. 2014;46:72- 101. doi:10.1016/j.jtherbio.2014.10.006.
    • 11. Misson BH. Note on measurement of body-temperature in Gallus domesticus. J Therm Biol. 1978;3(3):175-6. doi:10.1016/0306-4565(78)90015-3.
    • 12. Green AR, Gates SG, Lawrence LM. Measurement of horse core body temperature. J Therm Biol. 2005;30(5):370-7. doi:10.1016/j. jtherbio.2005.03.003.
    • 13. Ozeki LM, Fahlman A, Stenhouse G, Arnemo JM, Caulkett N. Evaluation of the accuracy of diefrent methods of monitoring body temperature in anesthetized brown bears (Ursus arctos). J Zoo Wildl Med. 2014;45(4):819-24. doi:10.1638/2014-0039.1.
    • 14. Torrao NA, Hetem RS, Meyer LCR, Fick LG. Assessment of the use of temperature-sensitive microchips to determine core body temperature in goats. Vet Record. 2011;168(12):328-45. doi:10.1136/vr.c6200.
    • 15. Special issue on. The contribution of radiotelemetry to the advancement of thermoregulatory research. J Therm Biol. 2012;37(4):249. doi:10.1016/j.jtherbio.2012.03.001.
    • 16. McCaefrty DJ. Applications of thermal imaging in avian science. Ibis. 2013;155(1):4-15. doi:10.1111/ibi.12010.
    • 17. Lovegrove BG. Modification and miniaturization of Thermochron iButtons for surgical implantation into small animals. J Comp Physiol B Biochem Syst Environ Physiol. 2009;179(4):451-8. doi:10.1007/ s00360-008-0329-x.
    • 18. Wacker CB, Daniella Rojas A, Geiser F. The use of small subcutaneous transponders for quantifying thermal biology and torpor in small mammals. J Therm Biol. 2012;37(4):250-4. doi:10.1016/j.jtherbio.2011.11.007.
    • 19. Langer F, Fietz J. Ways to measure body temperature in the field. J Therm Biol. 2014;42:46-51. doi:10.1016/j.jtherbio.2014.03.002.
    • 20. Nord A, Nilsson JF, Sandell MI, Nilsson J-Å. Patterns and dynamics of rest-phase hypothermia in wild and captive blue tits during winter. J Comp Physiol B. 2009;179(6):737-45. doi:10.1007/s00360-009-0357-1.
    • 21. Nord A, Nilsson JF, Nilsson J-Å. Nocturnal body temperature in wintering blue tits is aefcted by roost-site temperature and body reserves. Oecologia. 2011;167(1):21-5.
    • 22. vdB Morkel P, Miller M, Jago M, Radclief RW, du Preez P, Olea-Popelka F, et al. Serial temperature monitoring and comparison of rectal and muscle temperatures in immobilized free-ranging black rhinoceros (Diceros bicornis). J Zoo Wildl Med. 2012;43(1):120-4.
    • 23. Haftorn S. Hypothermia of Tits in the Arctic Winter. Ornis Scand. 1972;3(2):153-66.
    • 24. Moller AP. Body temperature and fever in a free-living bird. Comp Biochem Physiol B Biochem Mol Biol. 2010;156(1):68-74.
    • 25. Pereyra ME, Morton ML. Nestling growth and thermoregulatory development in subalpine Dusky Flycatchers. Auk. 2001;118(1):116-36.
    • 26. Nord A, Sköld-Chiriac S, Hasselquist D, Nilsson J-Å. A tradeof between perceived predation risk and energy conservation revealed by an immune challenge experiment. Oikos. 2014;123(9):1091-100. doi:10.1111/oik.01221.
    • 27. Piccione G, Caola G, Refinetti R. Maturation of the daily body temperature rhythm in sheep and horse. J Therm Biol. 2002;27(5):333-6. doi:10.1016/s0306-4565(01)00076-6.
    • 28. Bouwknecht JA, Olivier B, Paylor RE. The stress-induced hyperthermia paradigm as a physiological animal model for anxiety: a review of pharmacological and genetic studies in the mouse. Neurosci Biobehav Rev. 2007;31(1):41-59. doi:10.1016/j.neubiorev.2006.02.002.
    • 29. Busnardo C, Tavares RF, Resstel LBM, Elias LLK, Correa FMA. Paraventricular nucleus modulates autonomic and neuroendocrine responses to acute restraint stress in rats. Auton Neurosci Basic Clin. 2010;158(1- 2):51-7. doi:10.1016/j.autneu.2010.06.003.
    • 30. Blessing WW. Lower Brainstem pathways regulating sympathetically mediated changes in cutaneous blood flow. Cell Mol Neurobiol. 2003;23(4-5):527-38. doi:10.1023/a:1025020029037.
    • 31. Adams NJ, Pinshow B, Gannes LZ, Biebach H. Body temperatures in free-flying pigeons. J Comp Physiol B Biochem Syst Environ Physiol. 1999;169(3):195-9. doi:10.1007/s003600050211.
    • 32. Gray DA, Maloney SK, Kamerman PR. Restraint increases afebrile body temperature but attenuates fever in Pekin ducks (Anas platyrhynchos). Am J Physiol Regul Integr Comp Physiol. 2008;294(5):R1666-71.
    • 33. Hill RD, Schneider RC, Liggins GC, Schuette AH, Elliott RL, Guppy M, et al. Temperature during free diving of weddell seals. Am J Physiol. 1987;253(2):R344-51.
    • 34. Ponganis PJ, Van Dam RP, Levenson DH, Knower T, Ponganis KV, Marshall G. Regional heterothermy and conservation of core temperature in emperor penguins diving under sea ice. Comp Biochem Physiol A Mol Integr Physiol. 2003;135(3):477-87. doi:10.1016/s1095-6433(03)00133-8.
    • 35. Meir JU, Ponganis PJ. Blood temperature profiles of diving elephant seals. Physiol Biochem Zool. 2010;83(3):531-40. doi:10.1086/651070.
    • 36. Benedict FG. The physiology of the elephant. Washington: Carnegie Institution; 1936.
    • 37. Jensen SA, Mundry R, Nunn CL, Boesch C, Leendertz FH. Non-invasive body temperature measurement of wild chimpanzees using fecal temperature decline. J Wildl Dis. 2009;45(2):542-6.
    • 38. Acquarone M, Born EW, Grifiths D, Knutsen LØ, Wiig Ø, Gjertz I. Evaluation of etorphine reversed by diprenorphine for the immobilisation of free-ranging Atlantic walrus (Odobenus rosmarus rosmarus L.), vol. 9. NAMMCO Scientific Publications; 2015. doi:10.7557/3.2944.
    • 39. Lubbe A, Hetem RS, McFarland R, Barrett L, Henzi PS, Mitchell D, et al. Thermoregulatory plasticity in free-ranging vervet monkeys, Chlorocebus pygerythrus. J Comp Physiol B Biochem Syst Environ Physiol. 2014;184(6):799-809. doi:10.1007/s00360-014-0835-y.
    • 40. Friebe A, Evans AL, Arnemo JM, Blanc S, Brunberg S, Fleissner G, et al. Factors aefcting date of implantation, parturition, and den entry estimated from activity and body temperature in free-ranging brown bears. PLoS One. 2014;9(7). doi:10.1371/journal.pone.0101410.
    • 41. Green JA, Tanton JL, Woakes AJ, Boyd IL, Butler PJ. Eefcts of long-term implanted data loggers on macaroni penguins Eudyptes chrysolophus. J Avian Biol. 2004;35(4):370-6. doi:10.1111/j.0908-8857.2004.03281.x.
    • 42. Eichhorn G, Groscolas R, Le Glaunec G, Parisel C, Arnold L, Medina P, et al. Heterothermy in growing king penguins. Nat Commun. 2011;2. doi:10.1038/ncomms1436.
    • 43. Bevan RM, Boyd IL, Butler PJ, Reid K, Woakes AJ, Croxall JP. Heart rates and abdominal temperatures of free-ranging South Georgian shags, Phalacrocorax georgianus. J Exp Biol. 1997;200(4):661-75.
    • 44. Butler PJ, Bevan RM, Woakes AJ, Croxall JP, Boyd IL. The use of data loggers to determine the energetics and physiology of aquatic birds and mammals. Br J Med Biol Res. 1995;28:1307-17.
    • 45. Tøien O, Blake J, Edgar DM, Grahn DA, Heller HC, Barnes BM. Hibernation in black bears: independence of metabolic suppression from body temperature. Science. 2011;331(6019):906-9. doi:10.1126/ science.1199435.
    • 46. Long RA, Hut RA, Barnes BM. Simultaneous collection of body temperature and activity data in burrowing mammals: a new technique. J Wildl Manag. 2007;71(4):1375-9. doi:10.2193/2006-399.
    • 47. Hilmer S, Algar D, Neck D, Schleucher E. Remote sensing of physiological data: impact of long term captivity on body temperature variation of the feral cat (Felis catus) in Australia, recorded via Thermochron iButtons. J Therm Biol. 2010;35(5):205-10. doi:10.1016/j. jtherbio.2010.05.002.
    • 48. Mustonen A-M, Asikainen J, Kauhala K, Paakkonen T, Nieminen P. Seasonal rhythms of body temperature in the free-ranging raccoon dog (Nyctereutes procyonoides) with special emphasis on winter sleep. Chronobiol Int. 2007;24(6):1095-107. doi:10.1080/07420520701797999.
    • 49. Dausmann KH. Measuring body temperature in the field-evaluation of external vs. implanted transmitters in a small mammal. J Therm Biol. 2005;30(3):195-202. doi:10.1016/j.jtherbio.2004.11.003.
    • 50. Cooper CE, Withers PC. Patterns of body temperature variation and torpor in the numbat, Myrmecobius fasciatus (Marsupialia: Myrmecobiidae). J Therm Biol. 2004;29(6):277-84. doi:10.1016/j.jtherbio.2004.05.003.
    • 51. Schmidt A, Alard F, Handrich Y. Changes in body temperatures in king penguins at sea: the result of fine adjustments in peripheral heat loss? Am J Physiol Regul Integr Comp Physiol. 2006;291(3):R608-18. doi:10.1152/ajpregu.00826.2005.
    • 52. Niizuma Y, Gabrielsen GW, Sato K, Watanuki Y, Naito Y. Brunnich's guillemots (Uria lomvia) maintain high temperature in the body core during dives. Comp Biochem Physiol A Mol Integr Physiol. 2007;147(2):438-44. doi:10.1016/j.cbpa.2007.01.014.
    • 53. Gilbert C, Le Maho Y, Perret M, Ancel A. Body temperature changes induced by huddling in breeding male emperor penguins. Am J Physiol Regul Integr Comp Physiol. 2007;292(1):R176-85. doi:10.1152/ ajpregu.00912.2005.
    • 54. Nicol S, Andersen NA. Body temperature as an indicator of egg-laying in the echidna, Tachyglossus aculeatus. J Therm Biol. 2006;31(6):483-90. doi:10.1016/j.jtherbio.2006.05.001.
    • 55. Warnecke L, Withers PC, Schleucher E, Maloney SK. Body temperature variation of free-ranging and captive southern brown bandicoots Isoodon obesulus (Marsupialia: Peramelidae). J Therm Biol. 2007;32(2):72-7. doi:10.1016/j.jtherbio.2006.10.003.
    • 56. Signer C, Ruf T, Schober F, Fluch G, Paumann T, Arnold W. A versatile telemetry system for continuous measurement of heart rate, body temperature and locomotor activity in free-ranging ruminants. Methods Ecol Evol. 2010;1(1):75-85. doi:10.1111/j.2041-210X.2009.00010.x.
    • 57. Horning M, Haulena M, Tuomi PA, Mellish J-AE. Intraperitoneal implantation of life-long telemetry transmitters in otariids. BMC Vet Res. 2008;4. doi:10.1186/1746-6148-4-51.
    • 58. Adelman JS, Córdoba-Córdoba S, Spoelstra K, Wikelski M, Hau M. Radiotelemetry reveals variation in fever and sickness behaviours with latitude in a free-living passerine. Funct Ecol. 2010;24(4):813-23. doi:10.1111/j.1365-2435.2010.01702.x.
    • 59. Kruuk H, Taylor PT, Mom GAT. Body temperature and foraging behaviour of the Eurasian otter (Lutra lutra), in relation to water temperature. J Zool. 1997;241:689-97.
    • 60. Brain C, Mitchell D. Body temperature changes in free-ranging baboons (Papio hamadryas ursinus) in the Namib Desert, Namibia. Int J Primatol. 1999;20(4):585-98. doi:10.1023/a:1020394824547.
    • 61. Criscuolo F, Gauthier-Clerc M, Le Maho Y, Gabrielsen GW. Brood patch temperature during provocation of incubating common eiders in Ny-Alesund, Svalbard. Polar Res. 2001;20(1):115-8. doi:10.1111/j.1751-8369.2001.tb00044.x.
    • 62. Schmutz JA. Survival of adult red-throated loons (Gavia stellate) may be linked to marine conditions. Waterbirds. 2014;37:118-24.
    • 63. Thouzeau C, Peters G, Le Bohec C, Le Maho Y. Adjustments of gastric pH, motility and temperature during long-term preservation of stomach contents in free-ranging incubating king penguins. J Exp Biol. 2004;207(15):2715-24. doi:10.1242/jeb.01074.
    • 64. Weissenboeck NM, Schober F, Fluch G, Weiss C, Paumann T, Schwarz C, et al. Reusable biotelemetric capsules: a convenient and reliable method for measuring core body temperature in large mammals during gut passage. J Therm Biol. 2010;35(3):147-53. doi:10.1016/j. jtherbio.2010.02.001.
    • 65. Wilson RP, Putz K, Gremillet D, Culik BM, Kierspel M, Regel J, et al. Reliability of stomach temperature-changes in determining feeding characteristics of seabirds. J Exp Biol. 1995;198(5):1115-35.
    • 66. Kato A, Naito Y, Watanuki Y, Shaughnessy PD. Diving pattern and stomach temperatures of foraging king cormorants at subantarctic Macquarie Island. Condor. 1996;98(4):844-8. doi:10.2307/1369867.
    • 67. Kuhn CE, Costa DP. Identifying and quantifying prey consumption using stomach temperature change in pinnipeds. J Exp Biol. 2006;209(22):4524-32. doi:10.1242/jeb.02530.
    • 68. Hedd A, Gales R, Renouf D. Can stomach temperature telemetry be used to quantify prey consumption by seals? A re-examination. Polar Biol. 1996;16(4):261-70. doi:10.1007/s003000050053.
    • 69. Wilson RP, Kierspel MAM. A method for retrieval of anchored stomach probes from seabirds. Mar Ecol Prog Ser. 1998;163:295-7. doi:10.3354/ meps163295.
    • 70. Heide-Jorgensen M, Nielsen N, Hansen R, Blackwell S. Stomach temperature of narwhals (Monodon monoceros) during feeding events. Anim Biotelem. 2014;2(1):9.
    • 71. Handrich Y, Bevan RM, Charrassin JB, Butler PJ, Putz K, Woakes AJ, et al. Hypothermia in foraging king penguins. Nature. 1997;388(6637):64-7. doi:10.1038/40392.
    • 72. Enstipp MR, Gremillet D, Jones DR. Heat increment of feeding in double-crested cormorants (Phalacrocorax auritus) and its potential for thermal substitution. J Exp Biol. 2008;211(1):49-57. doi:10.1242/ jeb.012229.
    • 73. Schreer JF, Lapierre JL, Hammill MO. Stomach temperature telemetry reveals that harbor seal (Phoca vitulina) pups primarily nurse in the water. Aquat Mamm. 2010;36(3):270-7. doi:10.1578/am.36.3.2010.270.
    • 74. Sauve CC, Van de Walle J, Hammill MO, Arnould JPY, Beauplet G. Stomach temperature records reveal nursing behaviour and transition to solid food consumption in an unweaned mammal, the harbour seal pup (Phoca vitulina). PLoS one. 2014;9(2). doi:10.1371/journal. pone.0090329.
    • 75. Reuter RR, Carroll JA, Hulbert LE, Dailey JW, Galyean ML. Technical note: development of a self-contained, indwelling rectal temperature probe for cattle research. J Anim Sci. 2010;88(10):3291-5. doi:10.2527/ jas.2010-3093.
    • 76. Burdick NC, Carroll JA, Dailey JW, Randel RD, Falkenberg SM, Schmidt TB. Development of a self-contained, indwelling vaginal temperature probe for use in cattle research. J Therm Biol. 2012;37(4):339-43. doi:10.1016/j.jtherbio.2011.10.007.
    • 77. Munn AJ, Barboza PS, Dehn J. Sensible heat loss from muskoxen (Ovibos moschatus) feeding in winter: small calves are not at a thermal disadvantage compared with adult cows. Physiol Biochem Zool. 2009;82(5):455-67. doi:10.1086/605400.
    • 78. Audet D, Thomas DW. Evaluation of the accuracy of body temperature measurement using external radio transmitters. Can J Zool. 1996;74(9):1778-81. doi:10.1139/z96-196.
    • 79. Nord A, Chiriac S, Hasselquist D, Nilsson J-Å. Endotoxin injection attenuates rest-phase hypothermia in wintering great tits through the onset of fever. Funct Ecol. 2013;27(1):236-44. doi:10.1111/1365-2435.12003.
    • 80. Scholander PF, Hock R, Walters V, Johnson F, Irving L. Heat regulation in some arctic and tropical mammals and birds. Biol Bull. 1950;99(2):237-58.
    • 81. Larcombe A. Measurement of southern brown bandicoot (Isoodon obesulus) body temperature using internal and external telemeters. J R Soc West Aust. 2007;Part 90(3):161-3.
    • 82. Bonter DN, Bridge ES. Applications of radio frequency identification (RFID) in ornithological research: a review. J Field Ornithol. 2011;82(1):1- 10. doi:10.1111/j.1557-9263.2010.00302.x.
    • 83. Barclay RMR, Calcounis MC, Crampton LH, Stefan C, Vonhof MJ, Wilkinson L, et al. Can external radiotransmitters be used to assess body temperature and torpor in bats? J Mammal. 1996;77:1102-6.
    • 84. Bakken GS, Reynolds PS, Kenow KP, Korschgen CE, Boysen AF. Thermoregulatory eefcts of radiotelemetry transmitters on mallard ducklings. J Wildl Manag. 1996;60(3):669-78.
    • 85. Vuarin P, Dammhahn M, Henry P-Y. Individual flexibility in energy saving: body size and condition constrain torpor use. Funct Ecol. 2013;27(3):793-9. doi:10.1111/1365-2435.12069.
    • 86. Boyd IL. Skin temperatures during free-ranging swimming and diving in antarctic fur seals. J Exp Biol. 2000;203:1907-14.
    • 87. Willis CKR, Brigham RM. Defining torpor in free-ranging bats: experimental evaluation of external temperature-sensitive radiotransmitters and the concept of active temperature. J Comp Physiol B Biochem Syst Environ Physiol. 2003;173(5):379-89.
    • 88. Murray DL, Fuller MR. A critical review of the eefcts of marking on the biology of vertebrates. Research techniques in animal ecology: controversies and consequences; 2000.
    • 89. Kenward RE. A manual for wildlife radio tagging. London: Academic Press; 2001.
    • 90. Wilson RP, McMahon CR. Measuring devices on wild animals: what constitutes acceptable practice? Front Ecol Environ. 2006;4(3):147-54. doi:10.1890/1540-9295(2006)004[0147:mdowaw]2.0.co;2.
    • 91. McCaefrty DJ, Moncrief JB, Taylor IR, Boddie GF. The use of IR thermography to measure the radiative temperature and heat loss of a barn owl (Tyto alba). J Therm Biol. 1998;23(5):311-8.
    • 92. Weissenboeck NM, Weiss CM, Schwammer HM, Kratochvil H. Thermal windows on the body surface of African elephants (Loxodonta africana) studied by infrared thermography. J Therm Biol. 2010;35(4):182-8. doi:10.1016/j.jtherbio.2010.03.002.
    • 93. Amiel JJ, Chua B, Wassersug RJ, Jones DR. Temperature-dependent regulation of blood distribution in snakes. J Exp Biol. 2011;214(9):1458-62.
    • 94. Bakken GS, Van Sant MJ, Lynott AJ, Banta MR. Predicting small endotherm body temperatures from scalp temperatures. J Therm Biol. 2005;30(3):221-8.
    • 95. Giloh M, Shinder D, Yahav S. Skin surface temperature of broiler chickens is correlated to body core temperature and is indicative of their thermoregulatory status. Poult Sci. 2012;91(1):175-88. doi:10.3382/ ps.2011-01497.
    • 96. Teunissen LPJ, Daanen HAM. Infrared thermal imaging of the inner canthus of the eye as an estimator of body core temperature. J Med Eng Technol. 2011;35(3-4):134-8. doi:10.3109/03091902.2011.554595.
    • 97. Stewart M, Webster J, Verkerk G, Schaefer A, Colyn J, Staofrd K. Non-invasive measurement of stress in dairy cows using infrared thermography. Physiol Behav. 2007;92(3):520-5. doi:10.1016/j. physbeh.2007.04.034.
    • 98. Edgar JL, Lowe JC, Paul ES, Nicol CJ. Avian maternal response to chick distress. Proc R Soc B Biol Sci. 2011;278(1721):3129-34. doi:10.1098/ rspb.2010.2701.
    • 99. McCaefrty DJ, Moss S, Bennett K, Pomeroy PP. Factors influencing the radiative surface temperature of grey seal (Halichoerus grypus) pups during early and late lactation. J Comp Physiol B Biochem Syst Environ Physiol. 2005;175((6):423-31. doi:10.1007/s00360-005-0004-4.
    • 100. Rowley JJL, Alford RA. Non-contact infrared thermometers can accurately measure amphibian body temperatures. Herpetol Rev. 2007;38(3):308-11.
    • 101. Carretero MA. Measuring body temperatures in small lacertids: infrared vs. contact thermometers. Basic Appl Herpetol. 2012;26:99-105.
    • 102. Warnecke L. Quantifying torpor in small mammals non-invasively using infrared thermocouples. J Therm Biol. 2012;37(5):380-3. doi:10.1016/j. jtherbio.2012.02.002.
    • 103. Davidson AJ, Aujard F, London B, Menaker M, Block GD. Thermochron iButtons: an inexpensive method for long-term recording of core body temperature in untethered animals. J Biol Rhythms. 2003;18(5):430-2. doi:10.1177/0748730403256066.
    • 104. Roznik EA, Alford RA. Does waterproofing Thermochron iButton dataloggers influence temperature readings? J Therm Biol. 2012;37(4):260- 4. doi:10.1016/j.jtherbio.2012.02.004.
    • 105. Williams JB, Tieleman BI, Shobrak M. Validation of temperature-sensitive radio transmitters for measurement of body temperature in small animals. Ardea. 2009;97(1):120-4.
    • 106. Scholander PF, Hock R, Walters V, Irving L. Adaptation to cold in Arctic and tropical mammals and birds in relation to body temperature, insulation, and basal metabolic rate. Biol Bull. 1950;99(2):259-71.
    • 107. Brigham RM. Daily torpor in a free-ranging goatsucker, the common poorwill (Phalaenoptilus nuttallii). Physiol Zool. 1992;65(2):457-72. doi:10.2307/30158263.
    • 108. Niedermann R, Wyss E, Annaheim S, Psikuta A, Davey S, Rossi RM. Prediction of human core body temperature using non-invasive measurement methods. Int J Biometeorol. 2014;58(1):7-15. doi:10.1007/ s00484-013-0687-2.
    • 109. Taylor EN, DeNardo DF, Malawy MA. A comparison between pointand semi-continuous sampling for assessing body temperature in a free-ranging ectotherm. J Therm Biol. 2004;29(2):91-6. doi:10.1016/j. jtherbio.2003.11.003.
    • 110. Al-Khalidi FQ, Saatchi R, Burke D, Elphick H, Tan S. Respiration rate monitoring methods: a review. Pediatr Pulmonol. 2011;46(6):523-9. doi:10.1002/ppul.21416.
    • 111. Betke M, Hirsh DE, Makris NC, McCracken GF, Procopio M, Hristov NI, et al. Thermal imaging reveals significantly smaller Brazilian free-tailed bat colonies than previously estimated. J Mammal. 2008;89(1):18-24. doi:10.1644/07-mamm-a-011.1.
    • 112. Cooke SJ, Midwood JD, Thiem JD, Klimley P, Lucas MC, Thorstad EB, et al. Tracking animals in freshwater with electronic tags: past, present and future. Anim Biotelem. 2013;1(5).
    • 113. Nikita KS. Handbook of medical telemetry. Hoboken: Wiley; 2014. doi:10.1002/9781118893715.
  • No related research data.
  • No similar publications.

Share - Bookmark

Download from

Cite this article